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ABSTRACT: Alternatives to the Narayanaswamy expression (N) for nonlinearity, 7o = A exp[xAh*/RT +
(1 - x)Ah*/RTy], were derived from the Adam-Gibbs (AG) theory and fitted to experimental data on five
polymers. Two AG-derived expressions were evaluated: 7o = A exp[B/RT In (T;/T,)] (“AGL”) and 7, = A
exp[D/RT(1 - T,/Ty] (“AGV~). The N and two AG expressions gave comparably good fits for most thermal
histories, AGV giving somewhat better fits at the longest annealing times. Reported variations in N parameters
with thermal history were shown to be qualitatively consistent with AG predictions. The N parameter, x,
was shown to be a direct measure of T¢ /T, (T¢ = glassy state value of T); the N activation energy, Ah*, was
found to vary inversely with the AG parameters B and D. Correlations of B and D with Ty /T, were observed
and shown to be consistent with T¢ approaching T, as the AG primary activation energy decreased to zero.
The Kohlrausch-Williams-Watt parameter, 3, also decreased with decreasing Ty /T, suggesting increased
cooperativity as T’ is approached. Variations in AG parameters, obtained directly for polymer glasses and
indirectly from published N parameters for nonpolymeric glasses, were consistent with generally observed
variatons in non-Arrhenius behavior above T,. It was concluded that nonlinear behavior near and below T,

is determined by the same factors that influence equilibrium behavior above T,.

Introduction

It is well established that relaxation in the glass-tran-
sition region and glassy state is nonexponential and non-
linear. Nonexponentiality is demonstrated by the well-
known memory effect, in which relaxation from some in-
itial state depends on how that state was reached. This
has been discussed in detail by Goldstein! and is exem-
plified by the pioneering experimental studies of boro-
silicate glass by Ritland? and of poly(vinyl acetate) (PVAc)
by Kovacs.? Nonlinearity is indicated by the assymmetry
of relaxation following positive or negative departures from
equilibrium. For temperature jumps, nonlinearity is ob-
served for changes greater than about 2 K and gives rise
to the characteristically rapid changes in relaxation time
during heating through the glass-transition region. Indeed,
the term “transition” originates from the sharpness of these
changes with temperature. In this paper we formulate the
nonlinear aspects of enthalpy relaxation in polymers by
extending the Adams—Gibbs theoretical description of
linear relaxation processes above T,.

The most successful method for handling nonlinearity
is due to Tool,* who expressed the average relaxation time
as a function of the departure from equilibrium. With this
approach it is convenient to use the fictive temperature
T, introduced by Tool and Eichlin® as the “equilibrium
temperature” and defined by them as the temperature at
which the nonequilibrium value of some macroscopic
property would be the equilibrium one. Thus departure
from equilibrium is measured by T¢— T. This definition
of T has several limitations, however, that have been
discussed in detail by Ritland? and Narayanaswamy.® The
most important limitation is the implicit assumption that
a single equilibrium state can be associated with every
nonequilibrium state, which is valid only for exponential
relaxations that exhibit no memory effect. For nonexpo-
nential relaxations, the memory effect was interpreted by
Narayanaswamy® to mean that some nonequilibrium states
comprise several equilibrium states, each with its own
fictive temperature. Narayanaswamy handled this intri-
cate problem by assuming a single, thermorheologically
simple, nonexponential relaxation mechanism. Changes
in actual and fictive temperatures were assumed to shift
the time scale only, and for simplicity the shift function
was assumed to follow an Arrhenius form

= A ex Hy + A, (1)
7o P\ RT ™ RT,

where A, H,, and H, are constant parameters and R is the
ideal gas constant. Relaxation can then be described by
the usual methods of the linear response theory, modified
by eq 1 to include changes in 7, as T} relaxes. In particular,
Boltzmann superposition of responses to any thermal
history can be applied. This approach to structural re-
laxation was poineered by Mazurin, Rekhson, and Start-
sev.” Moynihan et al.? rewrote eq 1 as

o] AR, @ - man
To = 4 €XP) Tpp RT;

where 1 = x > 0, and it is in this form that the Naraya-
naswamy (N) expression is usually used. For nonpolymeric
materials the parameter Ah* usually equals the readily
evaluated activation energy for shear viscosity above T,.
For polymers, however, entanglements determine the
viscosity in the terminal region and other methods must
be used. The method of choice is to determine the cool-
ing-rate dependence of the glassy-state value of T}, Ty 2
obtained by integration of the normalized heat capacity
measured on heating.

Although the N expression describes the glass transition
and glassy-state relaxations very well, it has several
shortcomings. As noted earlier,’ these include the follow-
ing:

1. The prediction of an Arrhenius temperature depen-
dence for the equilibrium state (T; = T), in conflict with
the well-established Vogel'® and WLF!! expressions. As-
sociated with this are unusually large values of Ah*/R, as
high as 225 kK.1%13

2. The expression is empirical, and the parameters x
and Ah* have no clear physical interpretation.

3. The physical origin of the inverse correlation between
x and Ah*13 is obscure.

4. Systematic changes in N parameters with thermal
history, particularly in x, have been reported by several
groups.'4'6 These appear to be more pronounced at long
annealing times and low annealing temperatures. It has
been suggested by Chen and Kurkjian!” that these indicate
a qualitative distinction between glassy-state relaxations
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and the glass transition. An alternative view!4!5 ig that
the problem resides in the N expression for the partitioning
of T and T;. It is our opinion that the correct formalism
for the glass-transition kinetics has yet to be found and
that the N expression for nonlinearity is indeed suspect.

In seeking a theoretical basis for nonlinearity it is natural
to consider free-volume theories. However, although free
volume, V7, can be associated with a fictive temperature,
there is no direct method for introducing the actual tem-
perature. Macedo and Litovitz!® have criticized the usual
free-volume derivations for neglecting the thermal acti-
vation needed for a particle to move from one pocket of
free volume to another and derived the hybrid expression

79 = A exp(B/V;+ E/RT) 3)

where A, B, and E are constant parameters. Putting V;
~ T¢— T,, where T, is the temperature of zero free volume,
yields

= A exp[B’/R(T; - Ty) + E/RT] “4)

whose linear form (T; = T) was first proposed by Dienes.!®
Equation 4 correctly predicts an Arrhenius temperature
dependence in the glassy state but does not produce the
Vogel form at equilibrium. Nevertheless, the Dienes
equation was found by Macedo and Litovitz to give a good
account of the viscosity of B,0;, SiO,, alkali silicates, al-
cohols, and poly(isobutylene). Note that B’and E in eq
4 are independent quantities, related to free-volume
fluctuations and thermal activation barriers, respectively,
so that eq 4 has the disadvantage of having an additional
independent parameter compared with N.
Mazurin et al.?% proposed the equation

= A exp[Q,/R(T; - Ty + (Q/R)(T! - T¢h)] (5)

where A, @, Q;, and T, are constant parameters. This is
similar to eq 4 but produces the Vogel form in the equi-
librium state. However, it shares with N the disadvantage
of being empirical and like eq 4 has an additional inde-
pendent parameter.

Entropy-based theories offer a more promising approach
because they produce a natural separation of actual and
fictive temperatures. The Adam—Gibbs theory?! (AG) is
the most familiar of these and provides the foundation for
our treatment of nonlinearity. The AG expression for
relaxation time 7 is

Aus*
0= A4 exp( RTS ) (6)

where A is a constant, Au is the free-energy barrier hin-
dering rearrangement, s * is the configurational entropy
of the smallest group able to rearrange, and S, is the
macroscopic configurational entropy. The fictive tem-
perature is introduced into the expression for S, as

T;
S, = fT AC,/T dT )

where AC, is the configurational heat capacity and T, is
the configurational ground-state temperature, conceptually
identical with T, in the Gibbs-DiMarzio? thermodynamic
theory of the glass transition. Equation 7 expresses the
idea that the fictive temperature of a glass is a measure
of its configurational entropy and that loss of excess en-
tropy during annealing corresponds to relaxation of T
toward the annealing temperature, T,. In applying the AG
expression to enthalpy relaxation, it must be assumed that
the entropic and enthalpic fictive temperatures are the
same. This is a good approximation, however, because the
range in T and T for the glass-transition and annealing
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processes is sufficiently narrow that the integrals of AC,
and AC,/T are nearly proportional. For example, a range
of 20 K produces a difference in entropic and enthalpic
T on the order of 0.1 K.

Explicit expressions for 7o(T,T;) derived from eq 6 and
7 depend on the temperature dependence of AC,. For
constant AC),

70 = A exp[B/RT In (T;/T,)] (8a)

where
B = Aus*/AC, (8b)

Plazek and Magill® observed that the experimental ratio
of activation energies for creep recovery in 1,3,5-tri-a-
naphthylbenzene, above and below T, was in excellent
agreement with eq 8 with parameters determmed above
T,. Magxll24 also found that log (viscosity) varied linearly
w1th (TS,)! at low temperatures near T,, in accordance
with eq 6, but failed at high temperatures where the AG
assumptions were probably inapplicable.

Approximate relations between the parameters of eq 2
and 8 can be derived from appropriate temperature de-
rivatives (T¢ = unannealed glassy state value of TY):

Ah*/R = dln - ~B({L*+L? (9a)
d(l/T)
where
L=In(T{/T,) (9b)
and
cAh* /R = STl pp (10)
o(1/T)|r,
from which
x~L/(1+L) (11)

Equations 9 and 10 were first derived by Plazek and
Magill, using a different notation. Because of the loga-
rithmic term in T}, we refer to eq 8 as AGL.

For AC, with the temperature dependence

AC, = CT,/T 12)
where C = AC, at T, it has been shown®% that
10 = A exp[D/RT( - T,/ Ty] (13)
from which
Ah*/R ~D/(1 - Ty/T{)* (14)
and
x=~1-Ty/T¢ (15)

where D = Aus *T,/CT,. In the equilibrium state eq 13
assumes the Vogel form

= A exp[D/R(T - T))] (16)

and we therefore refer to eq 13 as the Adam—Gibbs—Vogel
(AGV) equation. Equation 12 is the simplest expression
of the experimental observation that AC, decreases with
increasing temperature, although it is recognized that the
empirical form

AC,=a-bT an

is generally more accurate.

The AG equation was also discussed by Howell et al.?®
in their study of the molten salt 0.4Ca(NO;),—0.6KNO,.
They derived the following general expressions for the
effective activation energies above and below T:
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dS«(T)
Ah* = E/S(T) + [ET/SCZ(T)]d—T (18)

xAh* = E /S (TY) (19)

where E = Aus*. These investigators observed that S,
must always decrease with decreasing T (AC, > 0), and
the value of xAh* must therefore increase with decreasmg
Tt In this respect both the AGL and AGV equations differ
significantly from the empirical eq 4 and 5, both of which
predict an Arrhenius activation energy in the glassy state
that is independent of T¢. Matsuoka® has shown that for
dielectric and mechanical relaxaton in PVAc the parameter
E in eq 4 varies with T¢ in a manner consistent with the
AG theory.

The AG expression was first applied to structural re-
laxation by Scherer?® in his analysis of NBS-710 soda-
lime-silicate glass. He inserted eq 17 into eq 7, using
calorimetrically measured values for the coefficients a and
b, and obtained an excellent description of published
viscosity,? refractive index,?* and enthalpy?®! data.

We conclude this Introduction with a few brief com-
ments on the parameter T, which appears in the AGL,
AGYV, and other expressions for 7y (T, T;). The concept of
a thermodynamically defined glass temperature T, origi-
nated with Kauzmann.?? For many inorganic and some
polymeric materials, T, can be calculated from the (tem-
perature-dependent) difference in heat capacity of the
liquid and crystal (~glass), AC,, the enthalpy of melting,
AH,,, and the melting temperature, T

Tm
AH, /Ty = fT AC,/T dT (20)

It is assumed in this analysis that AC, equals the config-
urational heat capacity, although this ﬁas been challenged
by Goldstein,® who pointed out that AC,, can contain large
vibrational and other contributions. For inorganics the
calculation of T, from eq 20 is usually unambiguous, al-
though care must be taken to properly include the entropy
of solid-state transitions in some cases. For polymers,
however, crystallizable forms usually have different tac-
ticities from purely amorphous forms, and it must be as-
sumed that AC,, AH,,, and T}, do not change with tacticity,
or change in a known way. It has also been argued34 that
the Kauzmann estimate of T, for polymers is an artifact
of incorrect extrapolation of AC,(T) below T, and the
Gibbs-DiMarzio theory? has also been criticized.?> Here,
we assume that a configurational ground state for the
amorphous state is conceptually possible, and that T, is
physically relevant to relaxation behavior.

Calculation and Fitting Procedures

The method for calculating normalized heat capacities
C,N was similar to that described previously.!> Nonex-
ponentlallty is described by the celebrated Kohlrausch—
Williams-Watt function

#(t) = exp[—(t /7))

with 7, expressed as a function of T and T according to
the AGL or AGV expressions. Equation 21 was first ap-
plied to structural relaxation by Rekhson et al.3 and is
known to be quite accurate for a large number of relaxation
processes in condensed media. The methods for dividing
the annealing time, t,, into subintervals, and for calculating
high-heat-capacity overshoots, differed somewhat from
earlier studies, however. First, t, was divided into five
subintervals per decade of time (in seconds), rather than
a constant total of 10 subintervals. This produced more
accurate values of Ty for long t.. Second, for large over-

128>0 (21)
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Table I
Narayanaswamy Parameters
material InA,s Ah*/R, kK x B8 ref

PVAc -224.5 71 035 0.57 38

-277.50 88 0.27 0.51 this work
PVC -622.0 225 0.10 0.23 this work
PS -211.20 80 049 0.74 this work
PMMA -357.8 138 0.19 0.35 this work
PC -355.8 150 0.19 0.46 this work
As,Se; -85.5 40.9 049 067 39
B,0; -75.6 45 040 0.65 40
5P4E -153.1 38.5 040 0.70 39
Ca?*-K*-NOy~ -202.47 70 031 046 41
NaKSi,;0, -62.79 49 0.70 0.66 42
ZBLA® -282.6 165 0.19 050 43

4See ref 43 for explicit composition. Ah* taken from ref 43.

shoots the usual constant-temperature step, AT}, of 1 K
was reduced in inverse proportion to CpN calculated for
the previous step, C, ;™

ATj = l/de'_lN CpJ_lN > 1
=10 C <1 (22)

pJ-lN
This procedure ensured that changes in T did not exceed
2 K per step, for C,N overshoots less than about 5 or 6. For
higher overshoots, this procedure did not guarantee that
AT; < 2 but was tolerated since only one set of data ex-
hibited an overshoot of more than 6. The new procedure
also generated values of C,N at noninteger temperatures;
values at integer temperatures, needed to fit experimental
data, were obtained by linear interpolation. The Mar-
quardt algorithm for obtaining best-fit parameters was
described earlier.?” As before,'337 one of the four param-
eters was fixed and the other three optimized. Initial
studies indicated that fixing B (AGL) or D (AGV), eq 8
and 13, produced values of T, A, and 8 that depended on
their starting values. Better behavior was found when T,
was fixed. In this case starting values of B and D were
calculated from T, and experimental values of T{ and Ah*,
using eq 9 and 14. Starting values for In A were calculated
by placing 7, = 10 s at T' = Ty = TY into the appropriate
equation for 7, and starting values 3 were set equal to
published N values.!> Averaged sets of parameters were
obtained for values of T, that gave the lowest overall re-
siduals. Because the calculation procedure differed from
earlier versions, new sets of N parameters were also ob-
tained, with Ah* fixed at the experimental values!?13:37
determined from the cooling-rate dependence of Ty.%

Results

The new N parameters for polystyrene PS, PVAc,
poly(methyl methacrylate) (PMMA), and bisphenol A
polycarbonate (PC) are collected in Table I, together with
those obtained by others for nonpolymeric glasses. An
additional set of parameters was obtained for PVAc with
Ah* /R = 71 kK, the activation energy reported by Sasabe
and Moynihan. 3

Best-fit AGL and AGV parameters for polymers, and
those for nonpolymeric glasses estimated from published
N parameters, are given in Tables II and III, respectively.
Two sets of AGV parameters are given for PS (see DlS-
cussion). Experimental and calculated values of C
and T, for poly(vinyl chloride) PVC are given in ’f‘able
IV as a function of T, and t, (here C,,,," is the maximum
value of C,N for the annealmg—mduced endotherm and T,
the temperature at which it occurs).

AGYV fits for PS are shown in Figures 1-3, for PVAc in
Figures 4 and 5, for PMMA in Figures 6 and 7, and for PC
in Figures 8 and 9. The AGL and new N parameters gave
similar fits in most cases and are compared with AGV fits



