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A New Class of Vacuum Solutions of the
Einstein Field Equations.(*)

R.P. KERR and A. SCHILD

Unwersity of Texas — Austin

1. - Introduction.

In this paper the general solution of Einstein’s empty space field
equations, R,, = 0, is obtained for a space where the metric has the
form

(1.1) G = N + Luly.

Here 7, is the metric of Minkowski space in co-ordinates which are
Cartesian but not necessarily rectangular, i.e., 7, are constants, with
signature + + +—, and [, is null:

(1.2) g™l = 0.

The reason for considering vacuum solutions of the form (1.1) is
that the contravariant components of the metric are easily expressed in
terms of the covariant components. In fact,

(1.3) g =t = I,
where
(1.4) " = g*l, =01,

and the determinant

(1.5) (—g) = —det(guw) = 1.

It follows that if {,, is null with respect to one of the two metrics g,
and 7, then it is null with respect to the other, i.e., eq. (1.2) implies

(1.6) 10, = 0,

(*) This research has been supported by the Aerospace Research Laboratory, Office
of Aerospace Research, and the Office of Scientific Research, U. S. Air Force.
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and vice versa.
The new vacuum solutions have the following properties:

a) They include as special cases the Schwarzschild solution and

the exterior solution of a rotating body which was recently discovered
by one of us [1].

b) All vacuum solutions of the form (1.1) are algebraically degen-
erate in the sense of the Petrov-Pirani classification, I, being a multiple
Debever-Penrose vector and thus geodesic and shear-free.

c¢) All vacuum solutions of the form (1.1) admit a one parameter
group of motions. The Killing vector K* is at the same time a Killing
vector of the flat Minkowski metric 7,,. In fact, with respect to 7,,, the
motion is just a translation along a direction which may be time-like,
space-like, or null in the Minkowski space. There are thus three cases:

nuwKFKY <0, (Case I)
(1.7) > 0, (Case II)
= 0. (Case III)

d) In each of the three cases, the general solution is determined by
one arbitrary analytic function of one complex variable.

e) If gu admits a Killing vector other than K*, it also must be a
Killing vector with respect to 7, .

f) There are at most two essentially different ways of representing a
vacuum metric in the form (1.1). For case I, apart from the special case
mentioned in a), the representation (1.1) is, in fact, unique, so that the
Riemannian space g,, determines uniquely the null vector field /, and
the Minkowski space 7. Similar statements hold for cases II and IIL

Together with their graduate student, Mr. George Debney, the au-
thors have examined solutions of the (non-vacuum) Einstein-Maxwell
equations where the metric has the form (1.1). Most of the results men-
tioned above apply to this more general case. This work is continuing.!

In the following sections, the derivation is outlined of the most im-
portant of the above properties, i.e., properties a) to d). The full de-
tails of all the proofs will be published elsewhere.?

!The results of that work were published in the paper: G. C. Debney, R. P. Kerr
and A. Schild, Solutions of the Einstein and Einstein-Maxwell equations, J. Math.
Phys. 10, 1842 (1969) [editor].

2 According to R. Kerr (private communication), the publication announced here
is the Debney — Kerr — Schild paper mentioned in footnote 1 [editor].
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2. - Outline of derivation.

A simple direct calculation of the Christoffel symbols { ;’V} for the

metric (1.1), (1.3) and of {:V} , {fy}l”, {lﬁ/}l”l”,p(*), and substitu-
tion into the vacuum field equation

2.1) R lM” =0,
yields
(2.2) L0 1P = 0.

By differentiating eq. (1.6), we also have
(2.3) LV IH = 0.

Thus, in the Minkowski metric 7,,, the vector I* I is null and
orthogonal to the null vector [#. In a four dimensional space with the
signature 3+ 1 of space-time, a vector v* orthogonal to a null vector I#
is either space-like or else a multiple of [#. Therefore

(2.4) W1 = plt,
Also, it is easily shown that
(2.5) B =10 17 = ult.

Thus the field eq. (2.1) implies that the null field I# is geodesic. We
can therefore define a new null vector field k* = I#/(2H)"/2, so that
(2.6) k.,k* =0, kM kY =0,
and

G = N + 2Hk,k,,

(2.7) g = n — 2HEHEY,
ku - gﬂuky = 'r’y‘l’k’/.

Another simple calculation gives?

(2.8) R, kPkY = —Hkk,,

(*) A comma denotes partial differentiation, e.g., I* , = 0* /02", a semi-colon, e.g.,
I*., denotes covariant differentiation with respect to the metric g,..
3The index at the first k on the left corrected from o to p [editor].
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where the dot denotes differentiation in the null direction k*:

(2.9) H = H,k".

A Riemannian space-time is caled algebraically degenerate (or alge-
braically special), in the sense of the Petrov-Pirani classification [2], if
and only if there exists a null vector field k# which obeys the equations

(2.10) kiaColpu kK" = 0,

where C,pu is Weyl’s conformal curvature tensor. In vacuum, where
the field equations R,, = 0 hold, the Weyl tensor and the Riemann

tensor coincide, i.e., Copur = Ropuy- Thus the condition (2.10) reduces
to

(2.11) ki Rolpu kK" = 0.

pHY

By (2.8), this is clearly satisfied. Thus all vacuum solutions of the
form (1.1), or equivalently (2.7), are algebraically degenerate, k,, being
a multiple Debever-Penrose vector.

The Goldberg-Sachs [3] theorem immediately implies that the null
field k* is not only geodesic but also shear-free.

We now introduce at each point of space-time a quasiorthogonal
tetrad of null vectors e,*, where Latin or tetrad suffixes range and sum
over 1, 2, 3, 4, and serve to label the different vectors of the tetrad,
while Greek suffixes are, as before tensor suffixes. The tetrad vectors
e1* and ex* are complex conjugates,

(2.12) e = 21",
es” and
(2.13) es = k¥

are real, and they satisfy the quasiorthogonality relations

01 0 O
1 0 0 O

(2.14) e ery = gab = 000 1|7 gab-
0 01 O

We define the Ricci rotation coefficients by

(2‘15) Tope = ‘eap;ueb#ecy = —ITpge



Republication of: A new class of vacuum solutions 2491

The geodesic and shear-free character of e4* = k* is expressed ana-
lytically by

(2.16) Dnag = I'yy = T'ygp = 0.
The rotation coefficients
(2.17) Iyy=z=0-iw, TNpp=2zZ=0+iw

are Sachs’ complex expansion [cf. Goldberg and Sachs (3], eq. (1.8)],
6 = Re[z] being the expansion rate of the congruence of null geodesics

which have k* as tangents, and w = — Im[z] being the rotation rate.
Throughout the following we shall consider only the general case
(2.18) 2#0.

The tetrad or slash derivative of an invariant is defined by

(2.19) T)o = Tpe =T el

By (2.9) and (2.13)

(2.20) T),=T.

For the commutator of two successive slash derivatives we obtain
(2.21) Tyab = Troa = Tym(Lap — I3a);

where

(2.22) Iy = 9" I'nab-

The tetrad components of the Ricci tensor are

Ry = R,Lu/eb#ecu =

2.23 . . "
( ) :F&/C_Fbc/a+rbap F F +Fbm(F Fcz:L

3. - The field equations.
We choose null co-ordinates in Minkowski space, complex conjugate

. = . 4
co-ordinates ' = {, 2 = (, and real co-ordinates 23 =wv, 2% = u, such
that

(3.1) My = n;w =

O O = O
OO O
- O O O
o = O O
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and
(3.2) ds? = gy dz*dz” = 2d¢dC + 2dudv + 2H (k,dz*)?.

A general field of* real null vectors in Minkowski space [cf. eq. (1.6)]
is given by(*)
(3.3) kudzt = eqydzt = du+Yd{ +Yd¢ — YYdo,

where Y is an arbitrary complex function of position. The tetrad is now
completed as follows,

elpdzt = dz —Ydv,
(3.4) egudzt = d¢ — Ydu,
espdzt = dv — Hk,dz*,
and is easily seen to satisfy the quasiorthogonality relations (2.14).
The conditions (2.16) for k, to be geodesic and shear-free become
(35) }//2 = }//4 - _}7/1 - 7/4 = 0
We then find that
(3.6) Imia = Iinoa = Iinza = 0.

Geometrically, this means that the tetrad vectors (3.4) are propagated
parallelly along each curve of the congruence of null geodesics which
have k* as tangents. Sachs’ complex expansion, eq. (2.17), becomes

(37) Z—_—}//l, 727/2

From here on, numerical suffixes on the Ricci tensor will always
refer to its tetrad components Ry as given by eq. (2.23).

The geodesic and shear-free condition (3.5) ensures that the follow-
ing five field equations are satisfied:

(3'8) Ri1 = Rog = Ryy = R14 = Roy = 0.
The field equation Rio = 0 gives
(3.9) H=¢¥(z+2), Py=0,

44or” corrected to “of” by the editor.

(*) The special case ku,dz" = dv can be included by a limiting process, e.g., by
starting with k. /(1 + YY) and then letting Y — oo. The complex function Y is the
ratio of the two components of the spinor which corresponds to the null vector k.
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where P, like H, isreal. The field equation R34 = 0 is now automatically

satisfied. The field equation R3; = 0 and its complex conjugate Rgs = 0
give

(3.10) Pn=(2/2)Y 3, Py =(2/2)Y)s.
Finally, the field equation R33 = 0 gives

1 1 —
(3.11) Py = (; + %> Y3Y 3.

It is well worth pointing out that the calculations giving these results
are by no means simple. In each of the above equations, all previously
mentioned field equations have been assumed to hold, and frequent use
has been made of the commutator relation (2.21) for slash derivatives.

It is now easy to show that P, Y and Y satisfy the pair of partial
differential equations

(312) X/4 IO, X/3 —X/IY/Q)/Z—X/Q?/:;/E—_—O,

and that Y and Y are functionally independent because z # 0 has been
assumed. It follows that P is a function of Y and Y:

(3.13) P=P(,Y),
and that the field egs. (3.9), (3.10), (3.11) simplify to
(314) Py :?/3/2, Pf:)//3/2.

Differentiating the first of these equations in the direction of the
tetrad vector e;#, we obtain, again using commutator relations for the
slash derivatives, zPyy = 2Py2, or equivalently

(3.15) (exp[—P])yy = 0.

Similarly (exp[—P])yy = 0, so that exp[—P] must be bilinear in Y and
Y:

(3.16) exp|—P] =b+aY +aY +cYY,

b and ¢ being arbitrary real constants, and a and @ arbitrary complex
conjugate constants.

It is now easy to show that the operator

0 0 o} 0 0
—_— M— —vg t— _— a— — -
(3.17) K=K OzH bau * aag * “ac “ou
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satisfies
(3.18)KY =0, KY =0, Kz=KY; =0, Kz=KY,;=0.

Thus, by eqs. (3.2), (3.3), (3.9) and (3.13), K* is a Killing vector
of our curved space-time with metric g,,. Also, since K* has constant
components, it is at the same time a translational Killing vector of the
flat Minkowski space with metric 7, .

4. - The general solution.

We are still free to perform Lorentz transformations which preserve
the form dsg? = 2d¢d¢ + 2dudv of the Minkowski metric. By a suitable
choice of such a Lorentz transformation, we can simplify our solutions
as follows:

Case I: NuwK!KY <0, a=a=0, b=c>0.
Then K* = b(0,0,—1,1) points along the time axis of Minkowski space.
Equations (3.5) and (3.18) give

oY Y
oY oY _ 9y oY B

(4.1) %+Y_6_C_—’ 3—5— %:o, 5" B
The general solution is

(4.2) F=0,

(4.3) F(Y,(,¢u+v) =&(Y) + [Y*C = ( + (u+0)Y],

where @ is an arbitrary analytic function of the complex variable Y.
It is now easy to calculate

(4.4) z=Y,=-(1+YY)/Fy,

(4.5) exp[3P] = V2m(1 + YY),

where Fy is the partial derivative with respect to Y of the function
(4.3), where m = 271/2b73 is an arbitrary real constant, and where Y
is determined as a function of the co-ordinates by the equation F' = 0.
The solution takes the final form

ds? = 2d¢d¢ + 2dudv —

— — — 2
(4.6) 1 du+YdC +Yd( - YYdv
— 4v2mRe [—] . T YYv .

Y
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Case II: NuwKFKY >0, a=a=0, b=—-c>0.
Then K, = b(0,0,1,1) points along a space axis of Minkowski space.

Arguments similar to those above, give the solution in final form

ds? = 2d¢d¢ + 2dudv +

(4.7) + 4v/2mRe [fl;] .

du+YdC +Yd¢ - YVdo]?
1-YY ’

where m = 271/2p73 is an arbitrary real constant, Y is a complex
variable, Fy is the partial derivative with respect to Y of the function

(4.8) F(Y,¢,Gu—v) = oY) = Y2+ ( + (u—v)Y],

where & is an arbitrary analytic function of Y, and where Y is deter-
mined as a function of the co-ordinates by the equation

(4.9) F=0, oY)=Y*+(+(u-0)Y.

Case III: 0, K*KY =0, a=a=c¢=0, b>0, K*=5(0,0,0,1).

With the same notation and explanations as above, we have the solution
in final form

ds? = 2d¢d¢ + 2dudv —

(4.10) —a&mR%Jﬁ-@u+mE+7@—Y?®ﬂ
Fy

(4.11) F(Y,(,¢,v) =®(Y) + ( — Y,

(4.12) F=0, o(Y)=vY—(

5. - Gravitational field of rotating body and Schwarzschild
solutions.

We consider here a particular solution with a Killing vector which
is time-like with respect to the Minkowski metric 7,,. Equation (4.2)
can be solved easily and explicitly if @ is a quadratic polynomial in Y.
We have chosen the direction of the time axis of Minkowski space so as
to simplify the general solution to the form (4.6). We are, however, still
free to perform translations and rotations in the 3-space orthogonal to
the time direction. By a suitable choice of such a translation and rota-
tion, the function F, eq. (4.3), with an arbitrary quadratic polynomial
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@(Y) can be reduced to the standard form(*)
(5.1) oY) = —/2iaY, a>0.

We introduce rectangular Cartesian co-ordinates z, v, z, t in Minkowski
space which are related to the null co-ordinates as follows

(5.2) V2 =z +iy, Vv=z—-t V2u=z+t
Then the function F' of eq. (4.3) is given by

(5.3) F =272 (z - iy)Y? +2(z — i)Y — (z +iy)] .

We define a real function p by

2 2 2
Tt +y z
5.4 —2 4+ - =1.
( ) p2 + a2 + p2
The solution of F =0 is

_ (p—2)(p+ia)
(5:5) = -

b

and for this Y we have

(56)  Fy=v2[(x—iy)Y + (2 — ia)] = V2(p* —iaz)/p,

(5.7) Yy ="2.
p+z

Substituting into eq. (4.6), we obtain
(5.8) ds?=da? +dy* +dz? —dt* +
i _p
p2 + a2
This is the exterior gravitational field of a rotating body [1]. When we
put a = 0, so that, by eq. (5.4), p = r = (22 4+ y* + 2%)/2, this reduces
to the Schwarzschild metric

2
P ldt+Zdz+
P

2
a

2
(5.9) ds? = da? + dy? + d22 — de? + —?—(dr + dt)?

in a form first given by Eddington [4].

(*) In this section we have changed notation slightly: a is now a real number which
lias nothing to do with the complex a of eq. (3.16); z is now one of the rectangular
Cartesian co-ordinates z,y, z,t in Minkowski space, and not Sachs’ complex expan-
sion, eq. (2.17).
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INTERVENTI E DISCUSSIONI

- W. D. BEIGLBOCK:

You gave us two solutions in your class, that have a fairly simple
physical interpretation — namely the Schwarzschild and the Kerr solu-
tions. Do you know whether there are any further solutions that would
allow a physical interpretation?

- A. SCHILD:

The answer is «no». When @(Y') is not a quadratic polynomial the

solutions are complicated, and we have not examined them.’

®The full reference for the second paper is: Quasi-stellar sources and graviational
collapse. Edited by I. Robinson, A. Schild, and E.L. Schucking, Chicago, University
Press, 1965, p. 99 [editor].

5The correct full reference to the Petrov paper is: A. Z. Petrov, Klassifikacya
prostranstv opredelyaushchikh polya tyagoteniya [The classification of spaces defin-
ing gravitational fields|. Uchenye Zapiski Kazanskogo Gosudarstvennogo Universiteta
im. V. I. Ulyanovicha-Lenina 114(8), 55 (1954). English translation (in the Golden
Oldies series): Gen. Rel. Grav. 32, 1665 (2000) [editor].

"The Goldberg — Sachs paper has been reprinted as a Golden Oldie, Gen. Rel.
Grav. 41, 433 (2009) [editor].

8The full reference to the first Robinson-Schild paper is: I. Robinson and A.
Schild, Degeneracy and shear. In: Proceedings on theory of gravitation. Conference
in Warszawa and Jablonna, 25-81 July 1962. Edited by L. Infeld. Gauthier—Villars,
Paris and Panstwowe Wydawnictwo Naukowe, Warszawa 1964, pp. 340-341 [editor].

9More solutions are known today. Information on them can be found, for example,
in the following sources:
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— A. KOMAR:
Ehlers, in his Royaumont paper'®, presented a general procedure

for obtaining a Ricci flat stationary space from a given Ricci flat static

space. What is the relationship (if any) between his procedure and
yours?

~ J. EHLERS:
The Schild-Kerr procedure is a definite generalization. The earlier

procedure gives only one parametric sub-family of the Kerr-metrios.
— A. SCHILD:
Answer by Ehlers.
— J. EHLERS:
If my method of constructing stationary vacuum fields from static
ones (described in my Royaumont lecture) is applied to the Schwarz-

schild solution a one-parameter (sub-) family of the Kerr-solution is ob-
tained.

2) In connection with the problem of filling matter into the Kerr-
solution I should like to point out: If the matter is to be a perfect fluid,

Tw = (p+ P)“ﬂuu — PGuv, (U,\UA =1),

and if the interior metric is to be stationary (like the exterior one) with
Killing vector

e = Uy

and if, moreover, g, is supposed to satisfy the Lichnerowicz junction
conditions along the (hyper-) surface S of the body with &* of class

a) J. Bicak, in Einstein’s field equations and their physical implications. Selected
essays in honour of Jirgen Ehlers. Lecture Notes in Physics, vol. 540. Edited
by B. Schmidt. Springer, Berlin 2000, p. 1.

b) N. Straumann, General relativity. Springer, Berlin 2004; section 7.2 (complete
derivation via Ernst’s equation).

c) H. A. Buchdahl, 17 Simple Lectures on General Relativity Theory, Wiley, New
York (N. Y.) 1981 (Lecture 13, p. 114).

d) H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers and E. Herlt, Ezact
Solutions of Einstein’s Field Equations. 2nd Edition. Cambridge University Press
2003. (Chapter 32, pp. 485 —505: discussion of the Kerr—Schild metrics, Chapters
19 to 21, pp. 292 — 340: description of the stationary-axisymmetric solutions).

e) S. W. Hawking and G. F. R. Ellis, The Large-scale Structure of Spaceetime.
Cambridge University Press 1973 [editor].

10The reference to this paper is: J. Ehlers, Transformations of static solutions of

Einstein’s gravitational field equations into different solutions by means of conformal

mappings. In: Les theories relativistes de la gravitation, Royaumont 1959, edition

CNRS, Paris 1965, pp. 275-283 [editor].
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C?, then S is given by U = cost. In fact, it follows from the above
assumption that

— A
Unpu* = -U)y, pyu* =0,
consequently because of «Euler’sy equation

(p+ P)“/\;#u“ = (‘%f —ufup)p

we obtain (p + p)du = —dp which implies, since p = 0 along S, that
u = cost along S also. In consequence of this fact it is possible to study
the «shape» of the field-producing body by means of data of the exterior
field alone, at least under the hydrostatic circumstances stated above.
In this way one may be able to get further support of the assumption
that this exterior solution actually corresponds to a body in a state of
stationary rotation.!!

~ A. SCHILD:

This is a very interesting remark. We shall look at the surfaces
on which the stationary Killing vector has constant magnitude. Since
the Kerr metric is known explicitly, this should be a straight forward
problem.

[Alla discussione parteciparono anche G. Mc VITTE, E. T. NEwW-
MAN, C. M@LLER, H. J. TREDER, E. DEBEVER.]

— A. SCHILD (additional remark):

Professor Misner in a letter, and Professors Debever and Lichnerow-
icz at this meeting, kindly drew my attention to papers by Vaidya (Na-
ture (1953))12 and J.Hély (Compt. Rend. (1960))!3 which examine
some space-times with electromagnetic radiation where the metric has
the form of our eq. (1.1).

" No perfect fluid source for the Kerr solution has been found until today [editor].

12The full reference consists of three papers by P. C. Vaidya: The external field of
a radiating star in general relativity, Current Science 12, 183 (1943); The gravita-
tional field of a radiating star, Proceedings of the Indian Academy of Sciences A33,
264 (1951); and “Newtonian” time in general relativity, Nature 171, no 4345, 260
(1953). All three papers were reprinted in the Golden Oldies series in Gen. Rel.
Grav. 31, no 1, 137 (1999) [editor].

13The full reference is: J. Hély, C. R Acad. Sci. Paris 251, pages 1981 and 2300
(1960) [editor].



