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Absiract

The field of enthalpy relaxation is reviewed, Current phenomenologies for dealing with the non-lincar and
non-exponential character of enthalpy relaxation are presented, and their successes and shoricomings are discussed.
Qualitative experimental data and guantitaiive parameterizations are summarized, and some directions for future

rescarch are suggested.

1. Introduction

This review summarizes developments in en-
thalpy relaxation in amorphous materials up 10
the end of 1992. The field is intimately associated
with the glass transition, and an abbreviated ac-
count of the glass transition phenomenon is in-
cluded, A comprehensive account of the glass
transition as an independent field of scientific
endeavor is not attempted, however, Excellent
accounts of the glass transition and glassy state
are avaijlable [1-5].

The review is divided into seven sections. The
introduction begins with some brief comments on
nomenclature, followed by a summary of those
aspects of linear response theory that provide a
foundation for the non-linear phenomenology of
enthalpy relaxation, and a brief account of the
kinetics of the glass transition. An account of

* Corresponding author. Tel: +1-716 477 3165, Telefax: +1-
716 722 2327,

experimental techniques is given in Section 2,
with emphasis piven to experimental difficulties
that can affect data quality. Phenomenological
equations for describing enthalpy relaxation are
introduced in Section 3, and calculation proce-
dures for implementing them are described in
Section 4. Experimental results are summarized
in Section 5, and enthalpy relaxation parameters
are discussed in Section 6. A summary and some
thoughts for future research are given in Section
7.

L1 Nomenclature

Many experiments described as enthalpy relax-
ation would be better described as enthalpy re-
covery, because it is the enthalpy recovered dur-
ing heating that is recorded and analyzed. En-
thalpy is also a retardation function rather than a
relaxation one (Section 1.2.2). To be consistent
with entrenched usage in the literature, however,
the terms enthalpy relaxation or simply relaxation
will be used here in statements of a general
nature. The more precise terms ‘enthalpy recov-
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ery’ and ‘retardation times’ are used where these
are specifically appropriate. Relaxation in the
glassy state is referred to in the literature as
structural relaxation, physical aging, stabilization
or annealing. The phrase ‘structural relaxation’
refers to inferred changes in atomic arrangement
that occur during relaxation, although these are
not known in any detail for most materials. The
term ‘physical aging’ was introduced by Struik [6],
to distinguish relaxation effects from those pro-
duced by chepmical reactions, degradation or
changes in crystallinity. The variety of terminofo-
gies reflects the considerable practical impor-
tance of glassy state relaxation, to both inorganic
and organic high polymer plass science and tech-
nology. We choose the term structural relaxation
here, and refer to relaxation in the glassy state as?
annealing. Annealing time and temperature‘are
written as 1, and T,, respectively. For conve-
nience, the supercooled Jiquid or rubbery state
above the glass iransition temperature range is
referred to as the equilibrium state, to distinguish
it from the non-equilibrium glassy state, even
though supercoocled liquids and some rubbers are
metastable with respect to the crystalline state
(except for most atactic polymers). Differential
scanning calorimetry is referred to as DSC.

The thermodynamic or ideal glass tempera-
ture, at which excess properties suéh as-entropy
vanish, is referred to in the literature as T, (in-
troduced by Fulcher), T, (introduced by Voge]
and also used by Tamman and Hesse), T, {intro-
duced by Gibbs and DiMarzio) and T, (identi-
fied by Kauzmann). Theoretical and experimental
reasons can be given for believing that T, T, and
Ty are equal for several materials (discussed be-
low), but this belief is not uniformly accepted.
Here, T, denotes the adjustable parameter in the
empirical linear Vogel-Tamman-Fulcher equa-
tion, T, is the temperature of zero excess entropy
in theoretically derived non-linear kinetic equa-
tiens and Ty is the thermodynamically deter-
mined Kauzmann temperature of zero excess en-
tropy. Sets of subscripted variables or material
parameters are enclosed in braces, e.g., {T}).
Braces are also used as the highest member in
the hierarchy of parentheses, {[(...)]}). Averaged
quantities are denoted by ¢...).

1.2. Kinetics of the glass transition

1.2.1. General aspects

The calorimetrically observed glass transition
is a kinetic phenomenon, and it is the kinetics of
the transition with which enthalpy relaxation is
concerned. The observed glass transition is essen-
tially a Deborah pumber (DN) effect, named
after the prophetess Deborah who declared that
what appeared to mortals to be stationary, such
as non-volcanic mountains and the size of the
oceans, are not necessarily so to an eternal deity.
The Deborah number is defined as the ratio of
timescales of the observed and the observer, and
the glass transition (s secen when these two

~tuimescales for structural relaxation cross over and

DN passes through unity. Thus, the glass transi-
tion can be studied by changing the timescale of
either the experimental probe, or the sysiem un-
der study. The experimental timescale can be
varied by changing either the frequency of an
applied sinusoidal perturbation, or the observa-
tion time for a time-dependent property. The
timescale of structural relaxation can be con-
trolled by temperature or pressure, 6r by various
applied stresses if the system is non-linear. In the
temperature domain that is explored most thor-
oughly, a DN of unity that defines an average
glass transition temperature, T, can be expressed
in terms of the rate of change of some character-
istic timescale, r, determined during cooling;

Qr=10, (1)

where AH, is the cffective average activation
energy at T,, defined as (3 In 7/A1/Tlr, (eg,
Eq. (3) below) R is the ideal gas constant and 0O
is the cooling rate. The derivative dr/d¢ has also
been termed the Lillie number by Cooper (7], and
has been discussed by Cooper and Gupta [8) and
Scherer [9]. Equating it to unity is implicit in
earlier work, however, and has been used io
estimate 7(T.) in terms of the activation energy
and scan rate, for example in Ref. [10). 1t will
enter again into the discussion of the fictive tem-
perature in Section 1.2.3, It is not advisable to
define DN (and therefore 7.} in terms of the
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heating rate, ,, alone, because the kinetics of
recovery are partly determined by the previous
history, such as cooling rate {often not specified,
a practice that is to be discouraged), and anneal-

213

ing. 1t can be shown from quite general argu-
ments that 7, increases in proportion to log Q.
[9,11,12], but the value of AH, near 7, is usu-
ally so large (typically several hundred kJ mol™1!)

Table 1
Averaged Tool-Narayanaswamy and KAHR parameters
Material AR* /R x 8 ~In AGs) T,(K) xak*/R AR*/RT? Ref
(kK) {kK) =8(K™ "
PVAC n 035 057 2245 310 25 0.74 [250]
7 041 051 2236 29 0.74 [133]
88 027 051 2715 24 092 [130]
PS 20 046 071 216.0 373 37 0.58 {130,161}
70 048 - - 373 34 0.56 [01]
53-71 052 08 - 373 32 0.44 1153
7%6-110 044 0.55 - 373 37 060 [248}
PVC 225 010 023 6220 353 23 1.74 (130
BPAPC 150 0.19 046 3558 415 29 0.87 [130]
a-PMMA 138 0.19 035 3578 375 26 0.98 (130)
150 020 035 375 21 Q.75 1162]
i-PMMA 80 022 043 325 1§ 0.76 [162)
s-PMMA 135 020 035 395 27 0.87 [162]
B,O, 45 040 065 75.6 535 i8 @.16 {160}
As,Se, 41 049 067 855 450 20 0.20 (257]
SPZE 39 040 070 1531 243 16 0.63 [42]
NBS710 2 74 044 063 28 840 33 0.105 [129,141]
NBS711 ® 45 0.65 065 574 670 29 0.10 [260]
ZBLA 168 023 043 2829 580 39 .50 [112,113,157
165 019 050 2826 3 .50 [130]
ZBLALIPb 124 623 053 510 28 (.48 [112]
ZBLALi 132 030 055 520 40 0.49 [112)
ZBLAN 112 035 0.36 535 39 0.39 (112]
ZBL 184 027 0.54 570 50 0.57 (112]
BZnYbT 137 035 048 620 48 0.36 [112)
LiAc 200 017 056 4907 405 34 1.22 (133]
Glycerol 26 629 0.5 190 7.5 0.73 {113)
EG ¢ (bulk) 1z 049 064 81.50 140 5.9 6.61 {z18]
EG ¢ (ge) ¢ 12 046 039 7545 150 55 0.53 [218)
LiC) © (bulk) 12 068 093 82.10 145 8.2 0.57 [218]
LiCl © (gel} ¢ 12 0.67 0.39 70.53 155 8.0 0.50 [21R)
40CalNO, )}, - 60KNO, 70 031 046 2025 335 22 .62 [258]
24.4]¥Na,0 (1 - yJK,;0)-75.68i0,

(y=0tc1.0) 49 070 .66 62.8 750 34 0.087 [259]
40Agl-60Ag ,MoO, 77 050 - - 365 39 0.58 [245]
50Agl-50Ag,Mo0, 61 055 - - 345 34 0.51 [245]
60Apl-40Ag , M0O, 43 0.65 - - 325 28 0.4] [245]
75ApP0O,-25Ag ,MoO, 61 068 - - 539 4] 0.21 {244]
30Agl-52.5A8P0,-17.5A2 ; Mo, 49 068 - - an 33 022 [244)
S0Agl-37.5A2P0;-12.5A8,MoO, 54 0.68 - - 418 7 0.31 [244]

# Soda-lime-—silicate.

® Lead silicate.

© Eihylene plycol (22 mol% in H,0).

9 Imbibed in poly(hydroxyethyl-methacrylate).
£ LiCl (16 mol% in H,0).
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that T, is defined to within a few K for cooling
rates that vary over several orders of magnitude,
Another definition of DN is

DN=7/{t)=1, (2)

where (1) is some average time of observation. If
(t) is numerically equated to the inverse of Q,
(i.e,, Q. =1 K), Egs. (1) and (2) are consistent
only when the factor A H,/RT/? is of order unity.
Such consistency is indeed found for a wide vari-
ety of glasses (Table 1), although there is a ten-
dency for some inorganic glasses to have values of
AH./RT} closer to 0.1. The last observation is
the source of the frequently quoted generaliza-
tion that 7(T,) = 107 5, since from Eq. (1) 7(T) =
(RT?/AH  X1/Q) = 10/Q, = 60 s, for a typical
cooling rate of 10 K min~!. The quantity
AH./RT} is equal to the KAHR parameter 6
(Section 3.2.2.).

In this review, T, is generally used to denote
the temperature at which the heat capacity mea-
sured during heating reaches half of its ultimate
increase through the glass transition region (the
‘midpoint’ definition frequently used in DSC
scans). More specific definitions and additional

Co| (CopCp2

nomenclature are introduced in the discussion of
fictive 1emperature in Section 1.2.3. The average
relaxation time at T, for typical DSC scans de-
pends on history, and on how T; is defined from
DSC data. Calculations using the Tool-Naraya-
naswamy phenomenology (Section 4.2.) confirm
the Lillie number analysis given above: for O =
Q=10 K min~', #(T,) = 100 s for the ‘onset’
definition of T, (where the heat capacity first
staris to rise above the glassy state background).
This onset value is the temperature at which the
tangent drawn through the inflection point in the
middle of the transition intersects the extrapo-
lated glass heat capacity. The ‘onset’ and ‘mid-
point’ definitions of T, are illustrated in Fig.
1(A).

In the isobaric liquid or rubbery state above
T, where molecular motion is rapid compared
with experimental observation times, the temper-
ature dependence of the average relaxation time
for many dynamic processes is given by the empir-
ical Vogel-Tamman-Fulcher (VTF)} equation
[13-15],

() =A exp(B/{T - Ty}), (3)

T
T lonset) max

T imic)

Fig. 1. {A) Definition of onset and midpoint values of T,: and of T¢, for a healing rate comparable with or greater than the cooling
rate. (B) llustration of exothermic excursion below T, resulting from a heating rate that is much less than the caoling rate.
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in which A4, B and T, are positive constants. The
VTF equation can be derived from the configura-
tional entropy theory of Adam and Gibbs [16]
(Section 3.2.3.), and in terms of free volume. The
free volume version is exemplified by the
Williams—Landel-Ferry (WLF) equation [17] that
is ubiquitous in the polymer literature. The WLF
equation expresses T, as T,~C,, and defines a
shift factor, ar, velative to some reference 1em-
perature {usually T, ).

_ T(T) _ CI(T_TE)
EIEy TPt )

(4)

An exiended discussion of the WLF equation 1s
given in the classic book by Ferry (18], in which
C, and C, are defined in terms of free voiume.
Ferry, and many others, have noted that Eq. (3} is
more cbjective than Eq. (4), because the values of
C, and C,; depend on the choice of T,. Accord-
ingly, Eq. (3) is used here in preference to Eaq.
(4). The effective VTF activation energy is

AH, dinr BT? B
= = B .
R AT (T-T) (1-T,/7)
(5

The VTF equation can be fitted to data using
reiterative linear least-squares or non-linear re-
gression technigues. The parameters are usually
correlated, because changes in B can be partly
compensated by changes in T,,, These changes
can be estimated by exploiting the fact that A H,,;
is tightly constrained by the data, so that relative
changes in B and 7}, can be determined from Egq.
(5). The WLF equation suffers the same problem,
as does the extension of the VTF equation into
the glassy state (Section 3.2.3.).

Another expression for 7(T}, deduced from
mode coupling theory, is

(r)=A"(T/T,-1) ", (6}

where T.> T, 1t is difficult to distinguish be-
tween Egs. (3) and (6) for 7> 7,. Their near
equivalence arises from the ‘Bardeen identity’,
discussed briefly by Anderson {19]:

exp{—1/x) = (2/e)2x-—0.13. {(7)

Eq. (7) is accurate to within a few percent near
x = 0.5, so that for T=2T, Egs. (3) and (6) are
essentially indistinguishable. However, it is not
possible to apply Eq. (6) to enthalpy relaxation
within and below the glass transition temperature
range, because it wouid have to be extrapojated
through the singularity at 7= T,. The relevance
of mode coupling theory to the glass transition
has been questioned by Angell {20,21], and is
discussed in the proceedings of an international
discussion meeting [22).

The plassy state below T, is generally a non-
equilibrium one [23), and glassy state relaxation
results from the thermodynamic driving force to-
wards (metastable) equilibrium. An early discus-
sion of the glass transition and non-equilibrium
glassy state was given by Simon [24]. Relaxation
in the glassy state below T, generally has an
Arrhenius temperature dependence. Any theory
or phenomenology must account for, or describe,
the change from VTF behavior above T, to Ar-
rhenius behavior below T,. Secondary B relax-
ations do not affect the glassy heat capacity, and
there is no evidence that they directly influence
enthalpy rclaxation. However, Goldstein [25,26)
has argued that they can affect the change in heat
capacity at T, because of the entropy associated
with the corresponding degrees of freedom.

1.2.2, Non-exponentiality

Most relaxation processes in condensed matter
are non-exponential, and enthalpy relaxation is
no exception. Non-exponentiality produces ihe
memory effect, which strongly influences en-
thalpy recovery after annealing. The memory ef-
fect is discussed below, but first we consider some
aspects of linear response theory for non-ex-
ponential decay functions, and summarize the
more common mathematical expressions used to
describe them.

A non-exponential decay function, ¢(r), is
mathematically equivalent to a distribution of re-
laxation or retardation times, g{ln 7):

o(t) = fjmg(ln ryexp(—t/7)dIn 7, (8)

[ glinz)dinr=10. 9)
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Because of this equivalence it is not possible, in
the absence of independent experimental infor-
mation, to determine if the essential physics lie in
&(1) or in g(ln 7). Averages of the relaxation or
retardation time, ("), are defined by the mo-
ments of glln 7) and (¢

(") =_[“ 7g(ln 1) d In 7, (10)

I‘( )f " lg(1) dr, (11)

where I' is the gamma function. In the frequency
domain, the corresponding expressions for the
complex retardation function, RX {iw), are

r:l(]w) RU
= (Rg— Ry)

grel(ln Trct) dln Trers

(12)

= 1
x ———
f_m (1+iwr.)

=(RR——RU)£T—(d¢/dQtﬁpﬁwf]dn

(13)

where i=(—1)% w is the angular frequency,
R'(w) and R"(w) are the real and imaginary
components of RE (iw), respectively, R, is the
unrelaxed (real) compenent of R¥ (iw), and Ry
is the relaxed component of RX (iw) (also real).

The value of Ry, corresponds to the limiting
high frequency or short time response, and Ry is
the limiting low frequency or long time response.
For exponential decay functions, g, (n ) is a
Dirac dehta function 8(r,, — 7o), and RX (iw) —
Ry is proportional to 1/(1 + iwry). The quantity
T i Eq. (12} is subscripted as a retardation
time, because in the time domain it determines
the rate of retardation as R increases from Ry to
Ry following a step perturbation:

R(1) =Ry + (Rg ~Ry)[1 - ¢(1)]. (14)
In Eq. (14), the response R(t) corresponds to the
change in a measurable property, P(7), following
an instantaneous increase {Heaviside function) in

a forcing perturbation from 0 to F: R(t)=
P(1)/F. In the frequency domain, this is general-

ized t0 R*(iw)=P*({w)/F*(iw). Familiar ex-
amples of R* (iw) are the complex relative per-
mittivity € *(iw) and the shear compliance J *(iw},
A less familiar example is the complex isobaric
heat capacity, C,(iw), discussed below. In this
last case the forcing function is the 1emperature,
and the measured response is the enthalpy (or
isobaric heat, see Section 2.2.). Since the limiting
high frequency {(short time, low temperature, or
glassy) heat capacity is less than the limiting low
frequency (fong time, high temperature, liquid or
rubber) heat capacity, the enthalpic 7 is a retar-
dation time.

If Ry> Ry, the rate of relaxation of R(¢)
from Ry to Ry s determined by the relaxation

time, Tigut

R(1) =Rp+ (Ry— Rg)o(¢), (15}
and

Ria{im) —Rg = (Ry — RR)

f 1L"""'rrtlax
(1 +1 wTrelax)

grelax(]n Trd.u) dlIn Trelax -
(16)

An example of RX  (iw) is the shear modulus,

G*(iw) = 1//*(iw). For properties thai are the
complex inverses of one another (such as G* and
J*), specific rejations exist between g, (in 7
and g.(n 7, 18],

The distinction between refaxation and retar-
dation times can be important for non-exponen-
tial decays, because their average values differ
substantially if the dispersion | R~Rg ! is large.
For G*(iw) and J*(iw)}, for example,

Trer = TreJax( ‘]R/JU) = Trelax » (17)

where the factor Ji /Jy; increases with increasing
non-exponentiality as

relax }

T e Stieo (18)
JU Tretax <Trelax )

For strongly non-exponential relaxations, or very
broad distributions of relaxation times, the two
moments of g, .,0n 7.,,.) n Eq. (18) can differ
by several orders of magnitude. The distinction
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between retardation and relaxation times also
enters into any comparison between the charac-
teristic times of different properties, and it is
important that a relaxation time for one property
not be compared with a retardation time for
another. For the rest of this review, however, we
omit the subscripts with the understanding that
we are discussing enthalpy retardation times.

An important consequence of non-exponen-
tiality is the memory effect, which arises from
Boltzmann superposition of non-exponential re-
sponse functions {as discussed by Goldstein [27)
and others). The memory effect refers to the
dependence of relaxation on the path by which
the starting state was reached, ie., the system
‘remembers’ its earlier history. The development
of sub-T, heat capacity peaks in some annealed
glasses is due to the memory effect, for example.
Another striking manifestation is the initial move
away from equilibrium afier two temperature
steps of opposite sign, followed by the inevitable
appreach to equilibrium at long times. This re-
sults in a maximum in the departure from equilib-
riurmn, first observed for volume by Ritland [28]
and Kovacs [29), and later by Hofer et al. [30] for
enthalpy [31}. It is instructive to analyze these
observations, the relevance of which to enthalpy
recovery has been discussed by Hodge [32]. Con-
sider a specific example of the thermal history
just mentioned: a downward step in temperature
from the equilibrivm state at T, to 7, at time ¢,,
followed by an upward step from T, to T, at time
t,. Boltzmann superposition of the responses to
these two temperature steps vields the time-de-
pendent enthaipy, H(t):

H(1) =Ho+ LAH(1 - 6t~ 1)), (19)

=H, + (Ho-H))¢(1-1)

+(Hy— H)[1 - ¢(1 ~1,)], (20)
= Hy+ (Hy = H)o[(1,~1,) + (1~ 13)]
+(Hy— HD1 = ¢(1 ~1,)], (21)

where {H} are the equilibrium enthalpies at tem-
peratures {7}, and {A H} are the enthalpy changes
corresponding to the temperature steps at times

{t;). If ¢(¢) is exponential and the retardation
times at {T}} are {1}, then

H(t)=H, +(H,- H,)

( (£y—1y) (f‘"fz))
xexp| — -
T T2
+(H2_H1)(1“3W __—(1“12))],
T2
(22)
T
—(HE—HI)}exp(-—(:-IEl]. (23)
T2

The expression in braces in Eq. (23) is indepen-
dent of time, so that H{(:) decays exponentially
from its value at ¢ =+,, with a retardation time =,
appropriate for the temperature T,. Thus, if an
observer’s clock started at r =1, there would be
nothing in the subsequent behavior to indicate
how the starting value was reached, i.e., the sys-
tern would retain no ‘memory’ of the earlier
temperature step at ¢ = r,. This occurs only when
(1) is exponential, because the transfermation
from Eq. (22} to (23) depends on the relation

[~ + (1 ~1,)] = ot — 1) (s —13),
(24)

which is unique to the exponential function.
Another history that demonstrates the memory
effect is exemplified in the ‘crossover’ experiment
of Spinner and Napolitano {33]. A sample was
equilibrated near T,, taken to a lower tempera-
ture, and annealed until the refractive index
reached an arbitrary value equal to that of a
sample equilibrated at temperature, T.. The an-
nealed sample was then placed in a furnace at
temperature 7, and the refractive index meoni-
tored as a function of time. It was observed to
pass through a minimum, corresponding to a
maximum in the volume. Thus, although the
non-equilibrium annealed sample had a refractive
index equal to a sample equilibrated at T,. the
subsequent time dependence indicated that the



218 I.M. Hodge / Journal of Non-Crysiaffine Sofids 169 (1994} 217266

non-equilibrium and equilibrated glasses had dif-
ferent structures,

The memory effect can also be described in
terms of the components of a distribution of
retardation times. Although each component de-
cays exponentially and exhibits no memory effect,
the overall departure from equilibrium at any
time can be partitioned berween the components
in several ways, depending on the path by which
the non-equilibrium state was reached, and these
different partitionings will produce different re-
laxation behavior.

The memory effect is seen only if the response
10 the first temperature step still has a significant
time dependence after the second step. This con-
dition is not fulfilled for the two limiting cases of
very small and very Jarge values of (1, — 1) /{7,).
If (¢, —1,) is very Jong, and for {r,} js very short,
then ¢(r — 1) = (s, —1,) =0 and the response
to the first temperature jump will have decayed
to zero. On the other hand, if (r,— 1) is very
short and for {7, is very long, then é(1 — 1)} =
${t ~ ;) and no term containing 7; will appear in
Eqgs. (19)-(21). In both cases, the effects of ther-
mal history for ¢ <1, on subsequent relaxation is
small.

The memory effect occurs in any non-exponen-
tially relaxing system, regardless of (although
modified by) any possible non-linearity in the
system, described next.

1.2.3. Non-linearity

In 1936, Lillie [34] reported a time-dependent
zero frequency viscosity, 7o(f), in inorganic
glasses. Since the viscosity Is proportional 10 the
average stress relaxation time

nU=GU<TrcI>& (25)

where Gy, is the {essentially time invariant)} limit-
ing high frequency modulus, Lillie’s observation
is equivalent to a viscosity- and time-dependent
{7,,;7, so that glassy relaxation is non-linear. Vis-
cosity 1s usually associated with structural relax-
ation in inorganic glasses {their activation ener-
gies are often the same), implying that structural
relaxation is also non-linear. Non-linearity was
confirmed in 1955 by Hara and Suetoshi {35], who
found that, for an equilibrated soda-lime-silicate

glass subjected 10 temperature jumps of opposite
sign and magnitude = 2 K, the form of the vol-
ume relaxation function depended on the sign of
the 1emperature step: the approaches to equilib-
rium from above and below occurred at different
rates. A similar asymmmetric approach to volumet-
ric equilibrium was observed in poly{vinyl ace-
tate} (PVAc) by Kovacs [36]. These observations
are independent of the memory effect and non-
exponentiality, because relaxation occurred from
the equilibrium state. The dependence of ¢{¢) an
the departure from equilibrium is equivalent to
the structural relaxation kinetics depending on
the time-dependent structure of the relaxing sys-
tem, so that in order to quantify non-linearity it is
necessary to specify the structural state mathe-
matically. Two equivalent methods are in general
use,

One measure of structure is the fictive temper-
ature, Ty, introduced into the literature by Tool
and Eichlin in 1931 [37) and Tool in 1946 [38], but
presented orally in 1924 [39]. Thus, non-linearity
was recognized more than 30 vears before the
memory effect was observed by Ritland [28] and
Kovacs [29], and some 45 years before non-linear-
ity and non-exponentiality were first combined in
a consistent way by Narayanaswamy (40,41]. This
very early introduction of T; indicates the consid-
erable practical importance of non-linearity to
annealing behavior. Excellent discussions of the
definition and use of 7; have been given by
Narayanaswamy [41), Moynihan et al. [42] and
Scherer [9]. The definition of T; for enthalpy is

H(T) = H(T}) - f:'Cpg ar’, (26)

where H(T}) is the equilibrium value of H at
temperature T; and C,, is the non-structural,
unrelaxed, glassy state heat capacity. The equilib-
rium state is defined by the condition T; =T, in
addition to the general requirement of time in-
variance, d7;/dt = 0. The value of T; defined by
Eq. (26) corresponds to the temperature of inter-
section of the equilibrium H,-T curve, with a
line drawn parallel to the glassy H,~T curve and
passing through the (H, T) point of interest. This
construction is shown in Fig. 2, which also illus-
trates how T; is the relaxational part of the
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Fig. 2. Defimition of fictive temperature from experimental
enthalpy versus temperatuere data (Eq. (26)).

enthalpy expressed in temperature units. The
structural contribution to the heat capacity is
obtained by differentiating Eq. (26):

Ei_iu (€= Cog)lr ~ (Cp_cps)iT

a7 {Cpe - Cpg)lT.f - ACp(TI) (27)
. (Cp_Cps)iT=
= W-Cﬁ‘, (28)

where (. is the equilibrium liquid or rubber
heat capacity, €, is the observed heat capacity
and C)' is the normalized heat capacity. Both C,,
and Cpg are generally temperature-dependent,
and must be obtained by extrapolation into the
relaxation temperature range, It is often assumed
(although rarely stated explicitly) that AC, in the
denominator of Eq. (27), specified at the fictive
temperature, Ty, is the same as that at tempera-
ture T, so that d7;/dT equals C,'. The accuracy
of this approximation is demonstrated by noting
that |7 — T;| rarely exceeds 10 K or so during
scanning through the relaxation region, so that
for the representative hyperbolic relation AC, ~
1/T (Eq. (55) below) the error is about 3% for
T,=373 K. The glassy value of T}, denoted by

T{, is obtained by integration of the normalized
heat capacity measured during heating:

Tfj = Tmax - fTTmﬂ'{ d—?:E

Tonax N
d7,
min dT T CP

T

min

) T =T, -
(29}

where T, < T, =« T ... Since T{ is defined in
terms of the integrated normalized heat capacity
measured during heating, its value for annealed
glasses can be affected by possible relaxation
during cooling from the annealing temperature to
the starting temperature for heating. For glasses
equilibrated at T, = T, such relaxation resuits in
values of T that are less than T,. The numerical
value of T, provides a definition of T, that is
preferred over those pgiven in terms of the heat
capacity curve measured during heating, either as
the onset or midpoint temperatures [11,43-45)
The relative values of T, and these definitions of
Tg are unambiguous for unannealed glasses, but
for annealed glasses the two definitions give 7,
values that move in opposite directions as the
amount of annealing increases: 7, decreases, but
the heat capacity curve measured during heating
moves 1o higher temperatures, The definition of
T, from the Deborah condition dr/ds=1 (eq.
(1)) has been shown by Cooper and Gupta [8] to
be approximately equivalent to d7;/d7 = 1 dur-
ing cooling (dr/dt = 2.0 and d7;/dT = 0.4 when
T=T,)

The fictive temperature concept becomes more
complex when the memory cffect associated with
non-exponential relaxation functions is consid-
ered. In these cases the structure of a material
must be formally defined by more than one fictive
temperature, and the global fictive temperature
for one property may not equal that for another.
Thus the fictive temperature is usually sub-
scripted with the property being considered, e.g.,
T, for enthalpy and Ty, for volume. In this
review, however, we deal almost exclusively with
the enthalpic fictive temperature and the sub-
script is omitted for convenience. An example of
different values of T, for different properties was
described by Ritland [28], who observed that two
glasses with the same refractive index arrived at
by different paths (rate cooling and annealing)
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had different electrical conductivites. Thus, at
least one of these glasses was characterized by
different fictive temperatures for refractive index
and electrical conductivity. Ritland concluded that
a single fictive temperature gives an inadequate
description of a non-equilibrium glass, and this is
supported by the thermodynamic analysis of
Davies and Jones [46]. Another example of a
different path to the same T; is a rapid quench,
compared with a slow cool under pressure fol-
lowed by pressure release (see Section 5.1.3.2.).
In this case the glasses have different densities
and their structures are clearly different. The
temptation to equate T; with a definite molecular
structure should therefore be avoided, and too
much physical significance should not be attached
to the numerical value of what is essentially a
phenomenological convenience.

A second method for specifving the structural
state, pioncered by Kovacs and co-workers
[36,47,48], is 10 define the departure from equilib-

rium in terms of a quantity, §,, defined for
enthalpy as

8(t) =H(t) — H() (30)
z‘lcp[Tf,H(‘) - T}, (31)

where H(x} is the limiting long time (equi-
librium) value of H{¢). As with the fictive tem-
perature, we dispense with the enthalpic sub-
script here. The use of § is discussed further in
Section 3.2.2., when the KAHR equation is intro-
duced.

It is often more convenient to describe the
excess enthalpy of a glass using T, rather than §,
because T; is a direct measure of excess enthalpy
whereas § differs for the same excess enthalpy,
depending on the thermodynamic temperature.

Non-linearity is handled by making the aver-
age retardation time a function of both T and 7,
{or 8). The application of this method 1o non-ex-
ponential relaxations is intricate, because the
memory effect can generate different relaxation
behavior from systems that have the same instan-
taneous values of T and T;. This problem was
first solved by Gardon and Naravanaswamy [40]
and Narayanaswamy [41], using the Tool fictive

temperature. and the resulting phenomenology is
best described as the Tool-Narayanaswamy (TN)
formalism. A key concept introduced by Gardon
and Naravanaswamy is the reduced time, ¢, de-
fined as

. dr’ f dt’
(1) = f_c,?(:_') =f_m[:r(:f); T{()]

(32)

The integral is path-dependent, because it in-
cludes the time dependence of both T and 7.
Generally speaking, T(¢'} is specified experimen-
tally by the thermal history and T(¢) is the
observed response to that history, although in
some cases non-thermal perturbations can change
T; directly (Section 4.7.). The reduced time lin-
earizes the kinetics, and the metheds of linear
response theory can be applied by replacing the
time ¢ with {. In particular, Boltzmann superpo-
sition of responses 10 all past perturbations can
be emploved, using a generalized form of ther-
morheologicai simplicity in which the shape of
¢li)or glln 1) is invariant with respect to both T
and 7;. Thermorheological simplicity has been
derived for glasses from the principle of equiva-
lency between time and temperature (both ther-
modynamic and fictive) [49]). Thermorheological
complexity, in which the shape of ¢{t) or g{ln 1)
changes with T or T, has been introduced into
the TN phenomenology by Mazurin and Startsev
[50] and others, but is rarely used. Further details
of how the TN formalism is implemented are
given in Section 3.2.

Spurious relaxation parameters can result if
non-linearity is incorrectly incorperated into the
reduced time. An example of such an incorrect
analysis has been discussed by Hodge and O’Re-
illy [51], using unpublished observations of
Scherer [52). For short annealing times, r{¢) can
be approximated as

(1) =Tgt", (33)

where 4 =d In 7/d In ¢, is the shift factor intro-
duced by Struik [6]. Eq. (33) has the important
consequence that the non-linear stretched expo-
nential relains its functional form, with an expo-
nent and retardation time modified by the shift
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factor, u:

¢ = exp(—{*) = exrn(— (fn';r%,;r)

- o - s | | ool (5]

(34)
where
B=(1-pn)p {35)
and
= [(1=pyrg] (36)

Eqgs. (33)-(36) will be referred to here as the
Scherer relations. They imply that, if a non-linear
stretched exponential is treated as a linear func-
tion, a good fit may still be obtained but with g8’
and 7' parameters that are determined in part by
the non-linearity parameter, u. Eq. {(33) is often a
reasonably good approximation, so that these re-
sults may be fairly general. In any event, the
Scherer relations provide an excellent illustration
of the pitfalls of neglecting, or incorrectly incor-
porating, non-Jinearity in the analysis of enthaipy
relaxation data. Analyses based on decay func-
tions that omit, or incorrectly incorporate, non-
linearity [53-60] must be considered unreliable.
For example, it is clearly inconsisient to estimate
a non-linearity parameter from +° data obtained
from linear fits to the stretched exponential.

In recent years, another formalism for han-
dling non-linearity has been introduced by Ngai
and Rendell. This approach differs most signifi-
cantly from that of Tool-Narayanaswamy in that
the time variable is not simply replaced by ¢, and
that non-linearity and non-exponentiality are less
easily separated. It is discussed in Section 4.3,

1.3. Thermodynamic aspects of the glass transition

1.3.1. The thermodynamic case

The kinetics of the glass transition have a
thermodynamic foundation, and enthalpy relax-
ation therefore has a thermodynamic dimension.
This dimension is discussed here.

The isobaric heat capacity of a supercooled
liquid or rubber exceeds that of the crystal at the
same temperature, so that the excess entropy of a
liguid or rubber over that of the crystal decreases
with decreasing temperature. Extrapalations for
many materials imply that the excess entropy
would vanish at a temperature well above abso-
lute zero. At this temperature, the entropy of the
supercocled liquid equals that of the crystal, and
if the same trend were to extend down to abso-
lute zero the entropy of the liguid would be less
than that of the crystal, in conflict with the third
law of thermodynamics. This difficulty was first
recognized by Kauzmann [61], and the extrapo-
lated temperature at which the supercooled lig-
uid and crystal entropies become equal is Xnown
as the Kauzmann temperature, Tx. The problem
15 often referred to as the Kauzmann paradox,
because it seems paradoxical that the interven-
tion of a kinetic event, the observed glass transi-
tion, averts rather than resolves a thermodynamic
impossibility. The value of T, is calculated by
equating the excess entropy of the liquid, relative
1o the crystal, to the entropy of melting AS

AS,, = f“wdr (37)

1
T T

where 77, is the melting temperature, and AC,(T)
is now the difference in isobaric heat capacity of
the liquid or rubber and that of the crystal (equal
to that of the glass within 5-10%). Because
AC,(T) must be obtained by extrapolation from
T, or 1, down to Ty, the value of T can be very
uncertain. For polymers, this difficulty is com-
pounded by the need to correct for tacticity and
partial crystallinity. Further, as noted already,
Goldstein [25,26] has argued that AC, is not
entirely configurational and may contain signifi-
cant contributions from vibrational and secondary
relaxation sources. He estimated that between 20
and 80% of AC, could originate from non-config-
urational sources, and noted that this renders
even more uncertain the extrapolations required
to assess T. Calculated values of Ty are always
found to be less than 7,, although in some cases
the difference can be as small as 20 K [62-65).



122 1.M. Hodge /Journal of Non-Crystalline Solids 169 {1994) 211-266

The value of Ty is often close to T}, of the VTF
equation [65], suggesting that the kinetic and
thermodynamic aspects of the glass transition are
related. The link between thermodynamics and
kinetics is an important aspect of the glass transi-
tion phenomenon, and is discussed below in more
detail.

Three resolutions of the thermodynamic diffi-
culties imposed by T > 0 have been proposed.
One is that the extrapolation of excess entropy to
Jow temperatures is not well defined and has no
firm theoretical basis, so that the prediction Ty >
( is a spurious result of incorrect extrapolation
[66,67]. As noted already, however, the extrapola-
tion is enly 20 K or so for some materials, and a
non-zero Ty seems inescapable in these cases. A
second resolution, suggested by Kauzmann [61), is
that the extrapolation s irrelevanm becavse the
thermodynamic driving force for crystallization
would always intervene before the entropy prob-
lem manifested itself. However, this intervention
has been shown to be extremely unlikely in some
systems [68], and it may actually be impossible in
two rather bizarre systems (CrO,-H,0 [69] and
RbAc—H,0 [70D, in which T, (and possibly Ty)
exceeds the eutectic temperature (the Kauzmann
analysis can be applied to eutectic mixtures [68]).
The third resolution is that a thermoedynamic
second-order transition occurs at Ty, at which
AC, falls rapidly to zero in a manner similar to
that which is observed kinetically at T,. Thus, Ty
is interpreted as a second-order lhermodvnamlc
transition temperature (in the Ehrenfest sense,
see below), but is unobservable because of kinetic
factors. 1t seems difficult to refute this hypothesis
other than to dismiss it as an artifact of extrapo-
Jation but, as has just been noted, this objection is
itself weakened by the fact that very short extrap-
olations are needed in some cases. Further, an
entropically based second-order transition at Tx
has been derived for polymers by Gibbs and
DiMarzio [71]. Although this theory has been
criticized [72], its predictions agree well with ex-
perimental observations near Tg, including recent
ones on the effect of molecular weight on T, for
polymeric rings [73,74]. The case for a thermody-
namic foundation for the glass transition is there-
fore quite strong, and it is appropriate to summa-

rize here some of the properties of thermody-
namic second-order transitions.

1.3.2. Ehrenfest relations

Ehrenfest [75] classified thermodynamic transi-
tions accerding to the smailest order of the
derivative of the free energy that exhibits a dis-
continuity at the transition temperature. Thus,
discontinuities in second derivative quantities
such as the heat capacity, compressibility and
expansivity are classified as second-order transi-
tions. Several thermodynamic relations can be
derived for second-order transitions, of which
only those for the pressure dependence of the
transition temperature will be considered here.
The purpose of these derivations is to introduce
expressions that are relevant to treatments of
pressure-dependent kinetics to be discussed later,
and that can be compared with experimental data
to identify the most important thermodynamic
variables controlling the glass transition and an-
nealing phenomena. The relations are derived by
sefing the differences between the liguid and
glassy values of the various first derivatives of the
free energy equal to zero, For volume,

0=d(AV) = (%K]P dT + (%)T 4P,
(38)

=VAadl-VAxdP, (39)

where Aa and Ax are the changes in expansivity
and compressibility at T, respectively. Thus,

or — (8 AV/3P),
{Eﬁ) G aven), (49)
= Ax/Aa. (41)

For entropy,

0AS JAS
0=d(AS) = (—é}‘_)p dT + [?)T dP, (42)

dAS a Al
() o F e
=TAC, dT -V AadP, (44)
and
(3T /9P} s = VT(&a/ACF). (45)
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For enthalpy,

dAH dAH
0=d(AH)=(T]PdT+ (_BP— TdP,

(46)

AV
= AC, dT + (AV—T(TT—]P) ap, (47
=AC, dT — TV Aa dP, (48)

where Al =0 becaus¢ the transition is second-
order., Thus

(3T/3P) y = VT(8a/4C,). (49)

Egs. {45) and (49) are jdentical, so that entropy
and enthalpy cannot be distinguished as control-
ling variables. Goldstein {cited in Ref. {76]) has
derived an expression from the condition that TS,
is constant:

BT) T Ao 5
(5 Tsc- (Sc-f'ACp)’ (v }

where §_ is the configurational entropy.

1.3.3. Prigogine~Defay ratio

Experimental values of d7,/d P gencrally agree
with Eqgs. {45) and (493 [76,77], and are smaller
than those given by Eq. (41) [76], suggesting that
enthalpy or entropy and not volume determines
T,- However, O'Reilly [77] has pointed out that
the &k is strongly pressure-dependent, and that
reasonable values of Ak can be found that satisfy
Eg. {41). McKenna [78] has also suggested that
the usually quoted values of Aw, AC, and Ax are
not obtained under the proper conditions and
that, if they were, Egs. (41) and {45) would both
be satisfied. However, enthalpy or entropy alone
cannot determine T,. Davies and Jones [46]
showed, from considerations of thermodynamic
stability that are independent of any assumption
about a second-crder wransition, that more than
ane thenmodynamic variable must determine T, if
the Prigogine~Defay ratio, JI, (Eq. (51)) is greater
than unity. Experimental values of [T generally
do exceed unity [42,79);

_AC, Ak (3T/3P),
T TV Ae?  (¥T/0P)

=1. (51)

11 it is assumed for simplicity that one variable is
dominant, however, it is evidently better to use
enthalpy or entropy rather than volume, The
superiority of enthalpy or entropy over volume
can be rationalized by noting that the isobaric
heat capacity has contributions from internai en-
ergy sources (the isochoric heat capacity), as well
as from volume changes (the term &?TV /k).
Gupta [80] has argued that a fictive pressure, 7,
in addition to 7;, is all that is needed to account
for II'> 1.

1.3.4. Heat capacity change at T,

Heat capacity is an extensive variable, and the
appropriate mass unit for configurational heat
capacity has been a subject of debate. A fre-
quently used unit is the ‘bead’, introduced by
Wunderlich and Jones (81]. The bead is defined
for organic high polvmers as a main chain or side
chain segment or functional group. Wunderlich
observed that AC, per bead is approximately
constant for polymers. A review by Mathot [82]
summarizes the number of beads per repeat vnit,
and values of ACP per bead, for several polymers.
Another method for dealing with mass is to nor-
malize AC, {or C_ .} by C,,. Values of AC,/C,,
vary greatly, from about zero for silica to about
2.0 for some hydrogen-bonded liquids [62].

The value of ACT,)) often decreases with
increasing 7,. For polymers, this can be rational-
ized in terms of the Gibbs-DiMarzio theory of
the glass transition [71], that predicts an increase
in 7, with chain stiffness (amongst other factors).
Since stiffness can reasonably be supposed to
decrease the mean-square fluctuations in configu-
rational entropy, {$2), it follows from the statisti-
cal mechanical relation

kgC,= (5% (52)

that AC,, should also decrease (k is Boltzmann’s
constant). A similar argument can be invoked to
rationalize the decrease in AC, with increasing
cross-link density in polymers. The value of
AC,(T,) has been discussed by Angell [5,20,21,62]
in terms of the breakdown in structure with tem-
perature, Materjals whose structures break down
rapidly with temperature have large values of
AC (T, (hydrogen-bonded liquids, for example),
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and are termed ‘fragile’. Materials whose struc-
ture is resistant to breakdown have correspond-
ingly small values of ACP(TS) (silicates, for exam-
ple}, and are termed ‘strong’. The variability in
AC(T,) contrasts with the approximate con-
stancy of the excess entropy at T, for which there
is abundant evidence, s0 it can be anticipated
that small values of AC, correspond to large
ratios of T,/Ty [76). This observation will enter
into later discussions of the physical origin of
non-linearity. The value of AC, also generally
decreases with increasing thermodynamic tem-
perature. An illuminating discussion of ACT,)
has been given by Alba et al. [83). Empirically,
AC, is often fitted to the linear equation

AC,=ay~-a,T (a,>0). (53)

Analysis of the data in Ref, [82] reveals that, for
most polymers, the values of a,/a, are such that
ACP has a temperature dependence lving be-
tween

AC, = C = constant (54)
and the hyperbolic form
AC,=C'T,/T=CT,/T, (55)

where C’ is the value of AC, at T, and C is the
value at T,. The intermediate behavior of poly-
mers supports the speculation by Angell [5] that
the temperature dependence of AC, should be
weaker than hyperbolic for larger molecu]es For
some materials, such as bisphenol A polvcarbon-
ate (BPAPC, often referred to simply as “poly-
carbonate’), Eq. (53) parameters predict that AC,
would be zero near the melting temperature, an
unlikely result. For other materials, AC, is pre-
dicted to be negative some 100-200 K above T,.
Negative values are unphysical, and serve to em-
phasize the empiricism of Eq. {(53). On the other
hand, the hyperbolic form of Eq. (55} is accurate
for many non-polymeric materials [83-85), and
never becomes negative. It should be noted, how-
ever, that Egs. (53) and {(55) are approximately
equivalent for T = 7, provided a,/a, = 1/(2T,)
<107 K- [R6):

CcT, CT, _ 2
Rk S TN P e
= T ( ) g ( )
2CT, CTZT 6
T, Tz (36)

where A=T/T, -1 < 1.

2. Experimental techniques
2.1. Scanning calorimerry

The most frequently used technique for study-
ing enthalpy relaxation is differential scanning
calorimetry (DSC). Indeed, the introduction of
commercial DSC instruments essentially made the
field of enthalpy relaxation possible. In this tech-
nique, the difference in electrical power needed
tc heat a sample and a reference matenal 1o the
same temperature is assessed, produced and
measured (hence the term differential). The ref-
erence (usually alumina) is heated at a controlled,
known and uniform heating rate (thus the term
scanning). The differential current is proportional
to the heat capacity difference between the sam-
ple and reference, and is a direct measure of the
sample heat capacity if the reference exhibits no
transitions and is thermally stable. Quantitative
heat capacities can be obtained if the heat capac-
ity of the reference is known as a function of
temperature. These data are necessary only if the
approximate equality between CN and dT;/dT
(Eq. (28)) breaks down, however, and even in this
case only heat capacity values in excess of C (T)
are needed. As noted already, however, Eq (28)
is sufficiently accurate in most cases that absolute
heat capacities are not needed. Thus, the mea-
surement of absolute heat capacities will not be
described here.

Experimental heat capacity data must be nor-
malized in order to compare them with calculated
curves. As noted in Section 1.2.3, both €, (T)
and C,(T) must be extrapolated through and
beyond the glass transition temperature range,
and this places a premium on experimental preci-
sion. One potential cause of poor reproducibility
in CNT) is a baseline shift between scans that
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changes the absolute values of €, and C,,, but
not their difference. Thus, 11 15 advisable 10 com-
pute C¥ using C,, and C,, data from the same
scan, rather than averaged values for several scans
(desirzhle for the most accurate absclute heat
capacities). The liquid (rubber) heat capacity, be-
ing an equilibrium property, is not sensitive to
thermal history (apart from the real possibilities
of chemical decomposition or crystallization). The
glassy heat capaciety is more problematic, because
relaxation effects can affect it to quite low tem-
peratures, so that C,(T) should be determined
at temperatures as far below the glass transition
range as possible.

It is important that good thermal contact be
made between the sample and sample pan, and
between the pan and the instrument cup. Good
samnple-1o-pan contact s readily achieved by
forming samples into thin disks that fit snugly
into the pan. Thermal contact between the sam-
ple pan and instrument cup can be improved by
applving silicone grease between the pan and the
cup. Thermal contacts can be important in deter-
mining the dynamic response of the measure-
ments, and thermal transfer corrections are a
constant source of uncertainty in all enthalpy
recovery experiments. Some researchers insist
that corrections should always be applied before
any data analyses are attempted, while others
have restricted their analyses to low overshoot
data obtained at relatively slow heating rates
(Section 4.6.). Thermal transfer is probably a
more important issue for polymers than for inor-
ganics, because polymers have lower thermal con-
ductivities and their glass transitions usually oc-
cur over a smaller temperatare range. Two as-
pects of thermal transfer will be addressed here.
The first is the time constant for heat transfer to
the sample, arising from the heat capacity of the
sample plus pan, and the total thermal resistance
berween the instrument cup and sample. The
effects of this time constant on the scanned heat
capacity have been estimated by Gray [87):

C,(0y=C+r,(dC, Jar) (57)
=Cl )+ 7, (dC, JdT)(dT/dr) (58)
=+, (dC. [4T) 0, (59

= C )+ RC, M (dC, [dT)Q, (60)

where C,(¢) and CJ(¢) are the observed and true
heat capacities per unit mass, respectively, r,, is
the thermal time constant, M is the sample mass
and R, is the total thermal resistance between
instrument cup and sample. A predicted baseline
shift due t0 sample mass has been omitted, Eqgs.
(57)-(60) quantify the intuitive notions that large
thermal resistance, large sample mass, fast heat-
ing tates and rapidly changing heat capacity will
all adversely affect transient data. The thermal
resistance, R, can be estimated from melting
endotherms, which are predicted to rise linearly
with slope dC,/dT = 1/Ry0,, and 1o decrease
exponentially with time constant, 7. For good
thermal conductors such as indium, R, obtained
in this way is dominated by the contact resistance
between the pan and cup, and this dominance
can also be expected for poorer conductors such
as polymers and inorganic glasses. Contact resis-
tance is affected by the flatness of the sample pan
bottom, which can be disiorted by small misad-
justments of sample preparation devices such as
crimping presses. The application of silicone
grease to the interface between the cup and sam-
ple pan, mentioned above, reduces this problem
by decreasing R,. Applying Egs. (57)-(60) to
experimental data is problematic, because it is
dC,/dr that is measured, not dC;/dt. Equat-
ing these two gquantities at constant heating
rate is approximately eguivalent to neglecting
1,(d7C ) /AT %), assuming ry, to be constant. The
accuracy of this approximation can only be as-
sessed a posteriori by evaluating d°C)¥ /dT? from
the computed temperature dependence of CJ(T).
Egs. (57)-(60) have not yet been applied to en-
thalpy relaxation analyses, although BHutchinson
and co-workers {90,91] used a similar procedure
(see below).

The thermal resistance of the sampie also pro-
duces a temperature gradient across the sample.
The first measurement of this appeared in the
thesis of DeBolt [88], in which temperature dif-
ferences of up to 1 K across ~1 mm thick
samples of Vycor glass were reported. These data
were obtained by placing slivers of indium at the
bottom and iop of the sample, and measuring the
two melting temperatures. O'Reilly and Hodge
[89] applied the same technique to polystyrene
and observed temperature differences across a
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0.5 mm sample ranging {rom 0.3 K at a heating
rate of 1.25 K min™?, to0 1.3 K at 20 K min™".
These differences increased linearly with heating
rate for both 0.15 and 0.5 mm thick samples, but
the variation with sample thickness depended on
heating rate (qualitatively consistent with Eq.
{60}). Since high overshoots can have a ‘full width
at half height’ of just a few K (using €)' = 1.0 as a
*baseline’}, such gradients can be expected to be
significant. Butchinson and co-workers [90,91]
proposed that transfer effects be assessed by as-
suming the heat capacities are exactly described
by the KAHR (and TN [92]} models {Section
3.2.2), and 10 ascribe all deviations to thermal
wransfer effects. The KAHR and TN models pre-
dict that, for a constant ratio of cooling to heating
rate, the heat capacity measured during heating
shifts along the temperature axis with changes in
heating rate, but does not change shape. This
approach depends on the KAHR or TN for-
malisms being correct, which is a reasonable as-
sumption for the simple rate cool and reheat
histories that the method uses.

Thermal transfer effects have also been dis-
cussed by Lagasse [93], Mraw [94], Richardson
and Burrington [95] and Hutchinson [96].
Richardson and Burringion determined a tem-
perature difference between the temperature
sensor and the bottom of a sapphire sample of
about 4 K at a heating rate of 30 K min~’, that
decreased linearly with decreasing heating rate
and passed through the origin. Sample mass has
been reported to affect the temperature differ-
ence between the sample and temperature sensor
[95], as well as the normalized heat capacity over-
shoot [97], consistent with Eq. (60). Lagasse [93]
described a technique for overcoming thermal
transfer in the measurement of enthalpy loss dur-
ing annealing. It exploits the transients induced
by starting and stopping scans, and s similar to
the technique used by Richardson [98] and Gray
[99] for measuring the enthalpy of melting of
crystalline polymers.

2.2. AC calorimetry

This recent technique has been applied to the
glass transition by Birge and Nagel [100,101],

Menon et al, [102] and Birge [103]. It is an exten-
sion of techniques used to measure static heat
capacities of organic liquids (see Refs. [7-9] in
Ref. [102]), and is an important development
because it measures enthalpy relaxation in the
linear region of small temperature changes, thus
avoiding the intricate non-linear phenomenology
and data analysis needed in scanning calorimetry.
The experiments are tedious and demanding,
however, and to date only a few materials have
been characterized.

Birge [102] has given an excellent discussion of
the frequency-dependent heat capacity. The heat
capacity is proportional to the mean-square fluc-
tuations in entropy (Eq. (52)), and since these
fluctuations have an associated spectral density it
follows from the fluctuation-dissipation theorem
that the frequency-dependent heat capacity,
€} (iw), is complex. The imaginary component of
a complex response function is normally associ-
ated with the absorption of energy from the ap-
plied field, but in ac calorimetry there is no net
exchange of energy berween the sample and its
surroundings. However, there is a change in the
entropy of the surroundings that is proportional
to €, and the second law of thermodynamics
ensures that C; = 0. The experimental technique
is to drive a sinusoidal current, (1), through a
thin heater made from a material with a jarge
temperature coefficient of electrical resistance
(usually nickel). The magnitude of the tempera-
ture oscillations depends on thermal diffusion
from the heater into the sample, and is a function
of the heat capacity, thermal conductivity and
geometry of the sample. Information on C}{iw)
is obtained from the magnitude of the tempera-
ture oscillations. The electrical power, P(1), is
proportional to the square of the current, so that
the temperature, T(t), has a dc component and a
phase shifted oscillation at twice the current fre-
quency:

1(t) = I, cos(wt /2), (61)
P(1) = (I3R/2)[1 + cos(wt)], (62)
T(t) = Ty + T, cos(wi ~ ). (63)

The oscillating temperature produces an oscillat-
ing heater resistance, R(r), which with the cur-
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rent at frequency w/2 produces a voltage, V{(1),
across the heater with a component at frequency
Jw/2:

R(1) =Ry + R, cos(wi — ¢), (64}

Rm :aRdcT

V() =I(t)R(t} =V, , cos(wt/2 — ')

+ V2 cos(3wt /2~ ),
(66)

(65)

Vsm/z‘_‘Ion/zs (67)

where a in Eq. (65} is the temperature coefficient
of resistance of the heater. Accurate rpeasure-
ment of the third-harmonic signal requires con-
siderable care. An imporiant element of the tech-
nique is the use of a Wheatstone bridge to cancel
the fundamenial compenent of the signal, which
is much stronger than the third-harmonic. An
out-of-phase component at the fundamental (Eq.
{66)) is not cancelled by the bridge, but does not
present a problem to any good lock-in amplifier.
If the bridge is purely resistive over the frequency
range of interest, any third-harmonic distortion in
the source signal is aiso nuiied. The frequency
range is 1072 to 6 x 10* Hz. For most boundary
conditions, the product C,« is obtained from T,
rather than C, alone {where « is the thermal
conductivity).

3. Phenomenological expressions

A minimum of four parameters is needed 1o
describe enthalpy relaxation. An effective activa-
tion energy is required to specify the cooling rate
dependence of 7/, a pre-exponential factor fixes
the absclute value of T and a minimum of one
parameter each is needed to specify non-ex-
ponentiality and non-linearity. In this section we
summarize the mathematical expressions used to
express these different aspects of relaxation be-
havior. Activation energies are discossed with
non-linearity, because the non-linearity parame-
1ers define the activation energies above and be-
low T,.

3.1. Non-exponentiality

Many empirical functional forms for non-ex-
ponentizlity have been suggested. A widely used,
versatile, convenient and generally accurate de-
cay function is the stretched exponential

o1y =exp(—~(t/70)") (128>0). (68)

This is referred to as the Kohlrausch [104,105],
Williams—Watt [106,107] or Kohlrausch—-Wil-
liams-Watt (KWW function, and statisticians will
find it {(and its derivative) familiar as the Weibull
distribution (albeit with 8 > 1). It has been said
with considerable justification [9) that Eq. (68)
has been in use for so long, and in so many
different applications, that it seems inappropriate
10 attach individual names to it. We adopt this
position here, and refer to Eq. (68) as the
stretched exponential. The average retardation
times are

(17) = (76/(BI'(n}))I(n/B), (69)
= {75/ T (n+ 1) (1 + (n/B)), (70)

and the ratio of retardation to relaxation times is
(cf. Eq. (18))

2
Tret _ ( Trelax >

BIr(2/8)
= 5. 71
[r(1/8)} 70

Neither g{r) nor R*{iewt) is expressible in terms
of named functions, except for g = 0.5:

_expl—r/47,]

- 2
Trelax <T1—¢|u>

g(r)= W (72}
and
. (Rg~Ry) (=\'* 1
R*(iwt)—Ry= T(T—U) -(:;—)—1;;5
k* k
Xexp(g] erfc(m)
(73)

L
=(RR—RU)«T“2{71)

xexp( —z%) erfc( —iz), (74)
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where 2k = (7)7'2, p=(8wr)'/? and z=((
+1}/p). Tables of exp{ —z2) erfc( ~iz) are avail-
able [108], and are included as library functions in
some software products. Tables of both g(r) and
R*(iw7) for 0.3 < 8 < 1.0 have been prepared by
expressing Eq. (68) as a sum of exponentials
[109,110]. The value of 8 can be obtained from
the full width at half height of the loss compo-
nent R"(w7), A, expressed in decades of w7
[111):

B~ 1= —0.08984 + 0.964794 — 0.004604 42
(03<8=<1.0;1.14<4<3.6), {75)

which gives 8 to within +0.001 for 8 < 0.7, and
within +0.002 for 0.7 £ 8 < 0.95. The suewched
exponiential has also been applied to enthalpy
relaxation in a truncated form, in which the short
time components of g{r) are suppressed
[112,113].

An ¢mpirical function often used in dielectric
relaxation spectroscopy is the Davidson—Cole
function {114]. It is characterized by a nearly
single relaxation time (Debye) low frequency re-
sponse, and an extended high frequency tail in
the loss. This function is unusual in having simple
forms in the frequency, retardation time and real
time domains. In the frequency domain,

(RR _RU)

R*(i -R,= . > ,
(le) U (1+iw70)? 1>y>0
(76)
from which
R'(w7) = Ry = (Rg = Ry)(cos ¢)7 cos(ve),
(77}

R*(wr) = (Rg = Ry)(cos ¢)" sin(ye),  (78)

where tan ¢ = wr,. The distribution function is

sin ymw T Y
8(ln 7/7y) = ( (r=7p)
Tn - T
=0 (r>719), (79)
and the decay function is
é(1) =1~ G(y, t/79), (80)

where
1

Gly,1/7¢) = T

f{’fwexp(—x)x""1 dx
a

(81)

is the incomplete gamma function [108). Eqg. (80)
has not been very vseful in the past, because of
the inaccessibility of G(y, t/74), but this function
is now increasingly availabie in Fortran mathe-
matical libraries. A numerical approximation to
¢(r) can be made by discretizing g{7) and ex-
pressing ¢() as a discretized version of Egs. (8)
and (9), and such discretized functions have been
applied to enthalpy relaxation [112,113]. The pa-
rameter y can also be expressed in terms of the
full width at half height of the loss peak R"(wr)
{111

vy~ = —1.2067 + 1.67154 + 0.22256942
(0.15<y<1.0;1.14 24 23.3), (82)

which gives y 1o within +0.002 for v < 0.9. Maxi-
mum values of R”(wr) are given by Eq. (78) for
G max = /{21 + ¥)). Lindsey and Patterson [110]
have piven a detailed comparison of the David-
son—Cole and stretched exponential functions.
They found that the two decay functions are
surprisingly similar, given the quite different dis-
tribution functions.

A logarithmic Gaussian distribution for g(in 1)
has been fitted to enthalpy relaxation data
[112,113]:

b
g{hr)= (;r—lﬁ) exp(—~ (5% In*(7/7))). (83)

It is derived from the reasonable assumption of a
Gaussian distribution of activation energies. The
latter implies that g{ln 7) changes with tempera-
ture and /or fictive temperature, although neither
of these possibilities is usually incorporated into
enthalpy relaxation calculations.

Box and wedge distribution functions have also
been applied to enthalpy relaxation. As intro-
duced by Tobolsky [115], the single box distribu-
tion is
g(ln 7y =1/In(7,/7)) (12272 T}

= (o<t <7)). (84)
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Expressions for R*(iwr) corresponding to the
box distribution have been given by Frohlich [116].
The wedge distribution is

71727172
g(]n‘r)=;l—,}-§ w (722721’])

=0 (ro<T<1y).
(85)
The double box distribution,
(n 7y = — o )
glnr)y=s 70—/ Ta27T27T
In(r,/7,) : !
(1-4) ( )
= (7y2T2T
In(7,/7,) } 2
=0 {(T3<r <), (86}

has been used in the analysis and parameteriza-
tion of enthalpv relaxation data by Kovacs,
Hutchinson and co-workers [47]. The decay fune-
tions corresponding to certain double box distri-
butions are remarkably similar to the stretched
exponential function for B = 0.5,

Other fupctions, used principally in the fre-
quency domain of dielectric relaxation, include
the Cole-Cole [117], Havriliak-Negami [118] and
Glarum [119] functions. However, these are in-
convenient to use in the time domain, and have
not yet been applied to enthalpy relaxation.

3.2. Non-linearity

3.2.1. Narayanaswamy-Maeynihan equation

Narayanaswamy [41] introduced a generalized
version of the Arrhenius equation of the form

Ta=A exp &+ il , (87)
0 RT  RT;

where A4, H, and H, are constant parameters
and R is the ideal gas constant [120}. In the
equilibrium state above T, where T; = T, Eq. (87)
transforms 1o the familiar Arrhenius form with an
activation energy H, + H,. Moynihan et al. [12]
rewrote this equation as

x AH*  (1-1x) Ah*)

1'0=Aexp( RT + RT
1

(1zx210), (88)

where x is a partitioning parameter that defines
the degree of non-linearity, and this is the form
in which the equation is now used. We refer to
Eq. (88} as the Narayanaswamy-Moynihan (NM)
equation. It has been recognized since its intro-
duction that Eq. (88) is only approximately true
near T, because it predicts an Arrhenius temper-
ature dependence in the eguilibrium state above
T, that is inconsistent with the VTF equation.
However, the range in T and T; over which the
glass transition occurs is sufficiently small that
the effective VTF activation energy (Eq. (5)) is
almost censtant. In some cases, the equilibrium
temperature dependence just above T, reverts to
the Arrhenius form, rather than continuing a
VTF dependence, and Eq. (88) is not inconsis-
tent. Such a return to Arrhenius behavior just
above T, is observed for the viscosity of B,0,
[121), Ca,/KNO, [122] and some simple organic
compounds [123], and is discussed below (Section
6.3.)

3.2.2. The KAHR equation
Kovacs, Aklonis, Hutchinson and Ramos
{(XAHR) [47] introduced the expression

In 7(T, 8) — In 7o(T;, &)
= —8(T-T,)—(1~x)85/4C,, (89)

where & is given by Egs. (30) and (31), T is a
reference temperature close to T, 8 is a form of
activation energy and x is a parameter that parti-
tions T and 3. As noted in the Introduction, @
lies in the range 0.1-1 K~! for a wide variety of
materials. Eq. (89) is referred to as the KAHR
equation. The relation between # and the NM
parameter Ak™ is derived by equating the tem-
perature derivatives of 7, in the equilibrium state
(T=T;, §=0), and making the approximation
T=Ti=T,:

Ah*  Ah* AR

8= = = A= .
RT? RT} RT]

(90)

Within the same approximation, the x parame-
ters of Eqgs. (88) and (89) are equivalent:

—0T - (1 -x)8(T; - T)
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AR*  (1-x) AR*  (1-x) Ak*
“RT © R, RT

x Al* (1=x) Ak*
=—prt RT, . (M)

Dimensionless and normalized parameters and

variables have been defined for the KAHR equa-

tion. The dimensionless temperature, .7, is
AhR*T

T =T = —,
RT;

(92)

and the normalized heating or cooling rate, &, is
*

RT}

& =0Q = Q. (93)

The dimensionless amount of annealing, Dy, is
BAS AW AT,
"7 Ac,  RT?

o £

(54)

where 46 and AT, denote changes during an-
nealing. An effective retardation time, 7., is
often associated with the KAHR phenomenology:

i 1 dé (95
T 6 df )
The value of 7.4 equals the retardation time for
an exponential decay, but for a non-exponential
decay function such as the stretched exponentjal
function, with a constant retardation time, Tgy it
is time-dependent:

1

— =B(tP71/78). (96)
Tefi

Thus, its use complicates the treatment of non-
hinearity, in which 7, is also time-dependent.

3.2.3. Adam—Gibbs equation

The Adam-Gibbs theory for linear relaxations
[16] is based on transition state theory, and pre-
dicts that configurational entropy determines the
average relaxation time. It gives rise to equations
that are almost indistingvishable from the VTF
equation, and for the hyperbolic form of ACAT)
(Eq. (55)) it reproduces the VTF equation ex-
actly. The ease with which this equation can be
extended through the glass transition to the glassy

state was quickly recognized by Macedo and
Napolitano [(121], Goldstein [124], Kovacs et al.
[125), Plazek and Magill [126), Magill {127) and
Howell et al. [128], but was not used explicitly for
enthalpy relaxation until the pioneering work of
Scherer [129], and in later studies by Hodge [130].
Because it invokes general concepts that have
had an important influence on thinking about the
cooperative nature of molecular motions in the
glass transition region, a derivation of the equa-
tioit is given here.

The central assumption is that relaxation in-
volves the cooperative rearrangement of many
‘particles’ (defined below). The transition state
activation energy, E,, is expressed as

E,=zAu, (97)

where Au is the elementary excitation energy per
particle, and z is the number of particles that
cooperatively rearrange. It can be shown mathes
matically that only the minimum value of z, z*,
significantly contributes to the relaxation time,
The value of z™ is determined by equating two
expressions for the configurational entropy per
particle:

SAT) s
Nao z9(T)
where S.(7T) is the macroscopic configurational
entropy (defined below), N, is Avogadro’s num-
ber and s is the configurational entropy of the

smallest number of particles capable of rearrang-
ing. Thus

(98)

r9=A exp( E,/RT), (99)
Z* Au

=A exp[ T ) (100)

Nysk bp :

=A CXD(M__kBTSc ), (101}

where a pre-exponential factor (1 — exp(— Ay /
kgT N1 has been suppressed because of its weak
temperature dependence relative to the exponen-
tial term. There must be at least two configura-
tions available to the smallest rearranging group
(those before and after rearrangement), so that

s¥=kyln W*2 kg In 2, (102)
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where W* is the minimum number of configura-
tions needed for rearrangement, The value of §,
is given by

sc=f::(acp/r) dT, (103)

where T, is the temperature at which §, extrapo-
lates 10 zero, i.e., the Kauzmann temperature. As
noted in the Introduction, we refer to it here as
T, rather than Ty to emphasize that it is an
adjustable parameter connected with the non-lin-
ear kinetics of the glass transition. Assessment of
AC,(T) requires care. It is common to equate it
with the difference between the liguid or rubber
and glass heat capacities, on the assumption that
this difference is totally comfigurational but, as
noted already, this assumption has been chal-
lenged by Goldstein [25,26]). Moreover, the tem-
perature dependence of AC, must be obtained
from extrapolated data, and these extrapolatichs
are uncertain. For example, C,, must be ob-
tained at temperatures well below T,, to ensure
that relaxation effects are not included in its
temperature dependence. These low temperature
data require lengthy extrapelations that place high
demands on experimental precision. In addition,
C,, must be measured over a significant tempera-
ture range in order that its temperature depen-
dence be accurately determined. Huang and
Gupta [131] evaluated expressions for C_(T)
suitable for extrapolation into and above the glass
transition temperature range, for a soda lime
silicate glass,

The functional form for 74(7) depends on the
temperature dependence of AC, (see Section
1.3.4.). For AC, = C = constant {eq. {54)),

To=4 exp(Q/T ln(T/TZ)), (104)
where
NA.S‘: Ap
= Q
kpC (105)

Eq. (104) is almost indistinguishable from the
VTF equation, and in fact retaining only the first
term in the expansion of the logarithmic term
reproduces the VTF form. For the hyperbolic
form of Eq. (55),

S.=C(1-T,/T), (106)

and the VTF {form is reproduced exacily [76,132)

Tp=A exp

T{i- Ty/7T) ) =4 e’“’{ 7T, )
(107)

As noted already (Section 1.3.4.), the hyperbolic
Eq. (55) has a somewhat stronger temperature
dependence than that observed for most poly-
mers, according to plots of the data compiled in
Ref. [82], and thus should be regarded only as a
mathematically convenient approximation for
polymers.

Eqgs. (98) and (106) imply that z* is propor-
tional to {1 — T,/7)~. Thus, z* and the barrier
height z* Ay diverge as T— T, and this diver-
gence can be expected to prevent T, approaching
T, [130,133,134]. Since z* is conceivably associ-
ated with some form of correlation length, it is of
interest that the correlation length computed from
a randem field Ising model also diverges, albeit
as (1 = T_/T)™" [135). However, no evidence for
a structural correlation length was observed in a
viscosity study of glycerol by Dixon et al, [136],
nor in a molecular dynamics simulation by Ernst
et al. [137). On the other hand, if z* is inter-
preted in dynamic terms, for example as the
minimum number of particles needed for the
ensemble averaged time correlation function to
be independent of size, it would not necessarily
be seen structurally. It is also possible that z*
correspends in some way to the ‘dynamic charac-
teristic length’, defined by the ratio of the fre-
quency of the Raman ‘boson’ peak to the speed
of sound [138,139]. Adam-Gibbs behavior has
been cbserved in a spin-facilitated kinetic Ising
model developed by Frederickson [140].

As noted above, the AG equation has been
extended through the glass transition to the glassy
state by several investigators, by replacing T with
T; in the expression for §.. In applying this
extension to enthalpy relaxation, it must be as-
sumed that the entropic T, is the same as the
enthalpic T; that enters into the non-linear forms
of 7(T, T;). This equality is a good approxima-
tion, however, because the temperature factor
relating enthalpy and entropy does not vary more
than about 20 K over the glass transition temper-
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ature range of integration. Scherer [129] inserted
the empirical eq. (53) form of AC(T) into Egs.
(101) and {103), using experimental values of the
coefficients a, and a,, and obtained good agree-
ment with the enthalpy relaxation data for NBS-
710 glass reported by Sasabe et al. {1411, Satisfac-
tory fits (within experimental uncertainty) were
also obtained for published viscosity data [142).
For AC, = C, the non-linear form of Eq. {104} is

1o(T, Ty) =4 exp(Q /(T In(Ty/Ty))).  (108)
For AC, = CT,/T,

T, T5) = A4 EXP(Q/(T(I - TZ/Tf)))' (109)

Eq. (108) has been termed AGL [130] (L denoting
the logarithmic term), and Eq. (109) has been
referred to as AGF (‘Adam-Gibbs-Fulcher’)
{130]. Approximate relations berween the Nara-
yanaswamy and Adam-Gibbs parameters are de-
rived from the temperature derivatives of 7, in
the equilibrium {(T;=T) and glassy (7;=Ty)
states. For Eq. (108),

dln7, Ak* R
d1/T R =Q(LT + LT
1._

Q( *) (see Eq. (113)),  (110)
and
dn T, x Ah* - 1
a 1/T T;_ R = Q : ( )
where
L=In(T{/T,) (112)

and the approximation T=7, has been used.
Thus
x=L/(1+L). (113)

Eqs. (110} and (111) were first obtained, using a
different notation, by Plazek and Magill [126].
For Eq. (109),

An* Q Y
R~ (1-T,7) (1-T,T)
=% (see Eq. (116)), (114)
x AR*/R=Q/(1 - Ty/T}), (115)

and
x=1-(T/T/}. {116}

Eqgs. (114) and (115) were first obtained by
Macedo and Napolitano {121}, albeit using a dif-
ferent route. They considered the ratio of glassy
and liquid state activation energies, and inferred
the Eq. (106) form for S, by eguating the VTF
and entropic AG equations. They did not invoke
the hyperbolic form of AC(T), first applied to
enthalpy relaxation by Hodge [130] but having
much earlier roots [76,132]. Egs. (110)-(116) are
special cases of the general expressions first de-
rived by Howell et al. [128]:

Ah* E ET dS§,

7 S—m ?E (117
and
x Ah*/R=E/S(T}), (118)

where E = Ap s¥. Thus, the general expression
for x is, in the approximation T = 7},
]

- r (fﬁ ]_ 119
“(”SC(T;) ) (19)

The difference in 7{/T, evaluated from Eqgs.
(113) and (116) depends on the value of x. For
small x the difference is small, but for Jarge x it
can be substantial. For x=0.15, 7{/T, =119
and 1.18 from Egs. (113} and (116), respectively,
whereas far x = 0.70 values of 10.3 and 3.33 are
obtained.

3.2.4. Free volume eguations

Free volume theories are less easily general-
ized to the non-linear domain because, although
a fictive temperature can be associated with the
free volume, it is not clear how a sufficiently
strong temperature factor can be introduced. This
deficiency was first emphasized by Goldstein and
Nakonecznyi [143), in their analysis of volume
relaxation data for PVAc reported by Kovacs
[36], and has also been discussed by Maceda and
Napolitano [121]. The close-packed or occupied
volume, V4, that is subtracted from the observed
volume to give the free volume, is temperature-
dependent {18), but this temperature dependence



I.M. Hodge / Journal of Non-Crysiailine Solids 169 (1994) 211-266 233

arises from the anharmonicity of vibrational
modes, and as Ferry [18] has pointed out *“._.its
magnitude and thermal expansion coefficient,
@g,-.. Temain a matter of comjecture and can be
estimated only indirectly”.

Free volume theories have been derived that
introduce an explicit temperature term, but the
resulting equations contain undesirable extra ad-
justable parameters, These (and other) equations
have been discussed by Scherer {129]) and Hodge
[130]. Macedo and Litovitz [144] derived a hybrid
equation by modifying the Doolitile equation {145]
(rationalized by Cohen and Turnbull [146]x

r=Aexp(b/f), (120)

where b is a constant of order unity and f is the
free volume fraction defined as

V-v, V.-V, V-V 5
f Vg.: Vg: V fT v

o

(121)

where V¥, and V|, are the equilibrium (limiting
long time} and ‘occupied” volumes, respectively.
The quantity 8, has been discussed above in the
context of the KAHR phenomenology, and can
be identified here with the recoverable part of
the fractional free volume. Macedo and Litovitz
suggested that an activation energy be added to
the free volume term, to account for the thermal
activation needed for a particle to move from one
pocket of free volume to another:

b E
T=A" exp T/;.f“f?? . (122}
If V; is assumed to vary as T, — T, this becomes
, B’ E
T=A exp( .- T, +ﬁ}’ (123)

whose linear form (T, = T) was first proposed by
Dienes [147), The Dienes equation was reported
by Macedo and Litovitz to give a good fit to
viscosity data for B,0,, SiO,, alkali silicates,
alcohols and poly(isobutylene).

Mazurin et al. [148) proposed the equation

o B" 01 1 .
T = exp m+ﬁ(?-ﬁ)]’ (12)

which becomes the VTF equation above T, where
T,=T, and is Arrhenius in the glassy state. This
equalion is not attractive, however, because it
contains an additional adjustable parameter.
Free volume concepts have been applied
through and below T, by Kovacs et al. [125]. They

wrote the equilibrium fractional free volume, f;
(Eq. {121)), as

fr=fi+a(T—T)), (125)

where a; is the coefficient of fractional free
volume thermal expansivity, and f, is the frac-
tienal free volume of the glassy state. Thus,

bd/fy
)

exp( (b/fs)(T- Tg)

(T,8)=nr, exp(

(fJja)+T-T. " (126}

Comparing Eq. {126} with the KAHR equation
(Eq. (89)) yields

0 =bay/f? (127
and
(1—-x})8=(bda}/f{, (128)

where Ag is the change in free volume expansiv-
ity at T,. For T = T,

x={a;—Aa)/a;. (129)

A free volume expression can also be formu-
lated using Adam-Gibbs concepts, by defining
z* in 1erms of the free volume per particle rather
than the entropy per particle. This approach is
straightforward, but does not appear to have been
described before. Eq. (98) is replaced by

Vi(T) /Na =0/ (2%(T}), (130)
so that

Nyo*
z*(T)sz(T)’ {131)

where v* is the minimum volume needed for
rearrangement. The non-linear free volume ver-
sion of the Adam-Gibbs equation then becomes

Nv* Ap ]

ks TV (T0) (132)

7ol T, T; ) =A exp(
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It seems natural to interpret v* as the activation
volume for the pressure dependence of 7, For
polystyrene, this is about 300 + 100 ¢cm® per mol
of monomer [149],

3.3. Pre-exponential factor
This is determined by 7} and the TN and

KAHR activation energies, A2* and @:

*

In 4=-— RT, +in 7(T{)
L 46[(r(T{)=100s)]  (133)
RT;
=0T, +4.6. (134)

For thermal histories without annealing, changing
In 4 moves the Ty vs. T curve along the ;=T
equilibrium line, and the d7;/dT vs. T curve
along the T axis by an amount

AT = (RT7/ah*) A In A=(31n 4)/6.
(135)

Changes in In A4 affect annealing behavior, be-
cause the difference between T and T, deter-
mines, in part, the rate of annealing.

4. Calculation procedures
4.1. The KAHR method

Kovacs, Aklonis, Hutchinson and Ramos [47]
described a procedure for salving the set of cou-
pled non-linear differential equations that arises
in the KAHR phenomenology. The non-exponen-
tial decay function is written as a finite series of
exponentials, where the retardation times, {7},
are defined by the KAHR equation (89):

¢'(I)= Zg! exp[-—f/'r'-(T, 6)] (136)
The coefficients g; also define the weighting fac-
tors dividing the total departure from equilib-
rium, &, of Egs. (30) and (31), into components &,
that correspond to each 1. Thermorheological
simplicity is enforced by keeping the {g} con-

stant. The differential equations are those defin-
ing the exponential function:

ds, -5,

ar (T, 8) (137)

where

&= ng3f§ 285:1- (138)
i ]

Eq. (137) is the same as that used in the pioneer-
ing work of Tool [38]). However, Tool used the
equation to define the complete decay function,
whereas in the KAHR phenomenology it defines
only one component of a non-exponential decay
function. Eqs. (136) and (137) are coupled be-
cause the 7, are defined in terms of the global
value of §, rather than the components 8. The
numerical solution of these coupled non-linear
differential equations is computationally expen-
sive, in part becausce the time increments must be
very smali in the equilibrium state above T,
where the retardation times are short. Thus, con-
siderable time is spent on calculating the equilib-
rium heat capacity, before the departures from
equilibrium that are of interest are observed dur-
ing cooling. This formalism was the first to be
applied to rate cooling and heating histories with
intervening annealing, and gave the first predic-
tion and explanation of sub-T, endotherms in
scans of annealed plasses [47], but it has been
used to fit only a limited number of experimental
heat capacity data,

4.2, The Tool-Narayanaswamy (TN) method

The TN method is based on Boltzmann super-
position of responses that have been linearized
using the reduced time method of Gardon and
Narayanaswamy [40] {Section 1.2.3.). It was used
to describe annealing effects by Narayanaswamy
[40,41) and others [150], but was first applied to
thermat histories that included rate cooling and
heating in 1975 by Mazurin et al. [151) and
Moynihan et al. [150]. The TN method has since
been used by many groups. The method is com-
putationally more efficient and more easily im-
plemented than the KAHR method, and has been
extensively used to extract enthalpy relaxation
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parameters from experimental data. Both the
Boltzmann and reduced time integrals must be
evaluated numerically. Numerical evaluation of
the Boltzmann integral is accomplished by ex-
pressing the therma)l history, T(t), as a series of
temperature steps, AT, that are small enough to
ensure a linear response (generally 1 K, but see
below). For uniform cooling and heating without
intervening annealing, T;(1) is given by

Ty, =To+ T AT{1 - 8(Z,,)) (139)

=1

=T, + ZH: B?}(l - ¢( i (ATk/(Qkfu,k))]]’

F=1 k=j

(140)

where Ty (> T,) is the temperature from which
cooling starts, 0, is the cooling or hcating rate
(negative for cooling), and 7, is a function of
Tieoq and Ty = To+ L7_; AT, During annealing,
the upper index of the Boltzmann summation is
fixed at n,, and the reduced time summation
becomes [152]

Ky +n A[k s
gj.n =
kep, TOk

(n=1, ng), (141)

where At, are subintervals of the annealing time,
t,, such that

Aa+rp

t,= Y. At

km=ng

(142)

To ensure linearity, the intervals At, must be
small enough that 7; decays by less than about 1
K. Dividing the annealing time into five logarith-
mically even increments per decade is usually
satisfactory, so that ng =5 log,, 1,(s). However,
time increments of 0.2 decades can be too large
to ensure linearity during initial relaxation in
some rapidly relaxing systems, such as those
formed by extremely rapid cooling rates, or for
the last stages of relaxation after very long an-
nealing times. These cases draw aftention to
themselves by changes in T, that exceed ~1K
per time subinterval, and can be corrected by
using shorter time increments,

For the commonly computed combination of a
stretched exponential for ¢{¢) and the NM ex-
pressicn for 7y, the explicit expression for T; ,, for
rate cooling and heating is

n H AP
Tin=To+ L ,’.\.Tj{l—cxp[—( E ﬁTx/Qkfo;k) ))*
=1 k=j
(143)

x Ak*  (1~x) Ah*
+
RTH RTf;n—l

There is no requirement that AT, or @, be
constant, although they are usually made so for
convenience. The value of dT,/dT is discretized
as

dT; Ty - Tf;n—l
a7 T,-7T,.,

The maximum values of dT,/dT can be very large
for annealed glasses, and in these cases a temper-
ature step of 1 K in Eq. (143} is 100 large. Hodge
[130] corrected this problem by making AT, an
inverse function of (d7,/d7T), _, for the previous
step:

AT =(ﬂ)"1 = Tio1 = Tay (Eﬁ;l)
k k-t T = Tipoy A dT

(145)

=1 (dT[/dTﬁl]
(146)

This procedure broke down when the rate of
change of dT;/dT was too large, which occurred
when d7;/dT exceeded 6 or so. Presi et al. [153]
used a self-consistency test for each calculation of
T; ., in which the magnitude of each temperature
step was changed until the computed value of Tok
became independent of AT, to within a specified
error amount. The maximum number of itera-
tions was usually two or three and the computa-
tion time did not increase substantially.
Integration of Eq. (143) is considerably faster
than solving the KAHR differential equations,
but it is still CPU intensive because the double
exponentiation needed to evaluate the stretched
exponential function occurs in the innermost of
two nested DO loops (corresponding to the re-
duced time and Boltzmann summations). Scherer
[154] and Rekhson [155] have reported (and the
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present writer can confirm) that a considerable
saving in computing time is gained if the decay
function ¢({) is expressed as a weighted sum of
exponentials. This procedure is computationally
more efficient because the memory effect is ab-
sent tor each exponential component, Each term
for each component of the distribution is ob-
tained by multiplying the value at the beginning
of a time step by exp{ — A{Y), where i indexes the
component of the decay function. This is much
faster than the addition of AZY to the argument
of the stretched exponential, followed by expo-
nentiation to the power B and computation of the
exponential function. In the program used by
Hodge [130], a two-dimensional array of g(8)
values is specified in a DATA statement for
values of g differing by 0.05, with intermediate
values of g{ ) obiained by linear interpolation.
Alternatively, {g (8)} can be obtained by a sub-
routine that least-squares fits L, g{8) exp(—
(1/7,)) to exp(— {1 /7)) for each iteration.

The stretched exponential expression for ¢(1)
was first incorporated into the TN formalism by
Rekhson et al. [156]. However, it should be clear
from the exposition just given that any form for
¢(t) can be used, and the box, wedge,
Davidson~Cole, truncated stretched exponential,
and log Gaussian forms for g{r) have all been
applied to enthalpy relaxation [112,113,157}, The
stretched exponential has been used with the TN
formalism more often than these other expres-
sions only because of its convenience and general
accuracy, and not because the phenomenology
demands it.

4.3. The Ngai-Rendell (NR) theory

This theory [158) derives the stretched expo-
nential decay function from basic principles, and
thus attaches a fundamental significance to its
functional form. The relaxation time, Te In Eq.
(68) is a function of 8:

1= (Bwl=F10)""%, (147)

where w,, 7§ and B may depend on T, (or §). If
only 7§ of w depends on T; or 8, non-linearity in
the TN sense is produced. The theary identifies
the relaxation rate as the relevant variable, and

the rate equation for the isothermal decay func-
tion (1) is

din¢ -1 ooy —BtF
- - 148
df ‘Tg (lichf) Tg ( )

where B and w, have been assumed to be inde-
pendent of time. In the linear case where 7, and
¢ are also independent of time, integration of
Eq. (148) vields the stretched exponential func-
tion. The non-linear decay function is obtained by
inserting the isothermal time dependence of To

into Eq. {148) and integrating;

o(1) = exp(—ﬁfo’dr’(wcr')"‘l/[ro(r')]ﬁ]-

(149)

This differs from the TN non-linear form

B
¢(r)=exp(-(£d!"/70(r')) ] (150)
whaose differential
din ¢ gt VBlag o, ar
de -F fﬂfu("), dt J:JTO(")
(1513
B ( drr \E!

= - 152
(1) M w)] (132

is not the same as Eq. (148) when (d7,/dt) =
dry [T(D)]/dr + 0.

There is recent evidence that Eq. (149) is
inconsistent with Boltzmann superposition
[111,159], even for the linear case where dr,/dT;
= 0. For a simple thermal history of two opposite
lemperature steps, between which the tempera-
ture is so low that no significant relaxation can
occur, Eq. (149} predicts a relaxation function
that depends on the time between temperature
steps, which is inconsistent with experimental ob-
servation. Consider a special case of the history
leading to Egs. (19)-(21), in which T,=T, is
sufficiently above 7, that equilibrium prevails
[159]. The fictive temperature is given by an ap-
propriately modified version of Eq. (19):

T(1) = Ty - AT(1 - (1, 1,))
+AT(1 = $(1, 1)), (153)
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where AT =T~ T, =T,-T,. Insertion of the
NR expression for ¢(r} (Eq. (149)) into Eq. (153)
yields

t_¢ B-1
Tf(:)=To—ar(l—exp(—f’ﬁ(—’f—ﬁi—dr'))

h

Bl — 1)

o d:')] (154)

The first integral of Eq. (154) may be written as

+ M(l-exp(—f

L]

' =1 ' E-1
frﬁ(t [1) dt:frzﬁ(f r1) dr'

TB I8 7{3
lJ B-1
Bt —1t

a1

]

[+

(155)

If T, is sufficiently low that no relaxation occurs
in the time interval t,-1,, the first term on the
right-hand side of Eq. (155} is zero and Eq. (154)
becomes

T(r) =T, + AT exp(—f 5
T

2 2

Y- B
B 1) dI,]

(156)

The two integrals in Eq. (156} are not the same
for B =1, so that a time dependence of T; is
incorrectly predicted for 7>1,. Thus, the NR
formalism predicts a memory effect even when
the response to the first temperature step has a
negligible time dependence {(Section 1.2.2.). The
TN result for the same history is

;d[r )
i

: T2

~sren{-( %)

=Ty, (157)

in accord with experiment. The Boltzmann super-
position problem for NR is seen from Eq. (156)
io reside in the choice of a correct zero for time,

that seems inherent in the selection of the time-
dependent relaxation rate as the physically rele-
vant variable,

If ¢(1) is expressed as a sum of exponentials,
the integrated version of Eq. (148) can be ex-
pressed as [113]

(1) =1- ZL’(%(%) exp(—t'/‘r,-)) de’.
(158)

However, if the {r;) are isothermally time-depen-
dent this expression does not go to zero in the
limit of Jong time [159], This particular difficulty
appears to arise from integrating the partial
derivative of ¢(1) rather than the full derivative,
11 can be shown [111], for the simplified form of

(1)
)y =7+ (r,=7)(t/t) (0=<i<u,)
=72 (1<t <),
(159)

that
)] ' dr

@y =1~ Z‘:Jg((? g d_F] expl - r'/f,)) de’ (160)
gives the correct physical limit ¢(¢ — «} — 0. This
difficulty is a separate issue from the Boltzmann
superposition problem.

It must be emphasized that these difficulties
with the NR approach are the subject of ongoing
research, and may vet be resolved. They serve to
emphasize once again, however, the need for
special care when dealing with relaxations that
are both non-linear and non-exponential,

4.4. Evaluation of parameters from experimental
data

4.4.1. Activation energy

Values of Ah™ or # are best evalvated from
the cooling rate dependence of T/, determined
before any annealing has occurred:

din O,
d(1/T¢) "

Eq. (161) is valid over a larger range of cooling
rates than that expected from the approximations

0T, = Ah*/R= - (161)
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used in its derivation. Scherer (9] has discussed
this and associated issues related to the tempera-
ture dependence of 1, The theoretical consis-
tency between Eq. (161) and the TN formalism
has been demonsirated by Moynihan and co-
workers [12,160], and for the KAHR formalism
by Kovacs et al. [47]. Eq. (161} generally gives
Ah* 1o within 2%, although larger errors of the
order of 10% occur when x and B are very small
[111]. As noted by Richardson and Savill [43],
DeBolt et al. [160] and Hodge [130,161], the
evaluation of Ak* or @ from Eq. (161) has three
experimental advantages over other methods.
First, thermal transfer effects are largely inte-
grated out. Second, temperature calibration is
simplified because T/ is determined from data
measured at a single heating rate. In fact, tem-
perature calibration is not required at all, pro-
vided any temperature discrepancy is constant
over the temperature range of integration and
does not drift with time. The need for tempera-
ture calibration is vitiated because differentiation
with respect 1o (77 + 8T) rather than Ty pro-
duces errors of the order 8T /T{, or a few per-
cent for 87 < 5 K, and experimental uncertainties
in the derivative in Eq. {(161) are usually larger
than this. The third advantage is that the usable
range of cooling rates is wider than that for
heating rates, because no instrumental sensitivity
limits are met at low cooling rates. A large range
in cooling rates is needed for accurate determina-
tions of high values of Ak*, because the uncer-
tainties in 7y are fairly large (typically +0.5 K for
polymers, smaller for inorganics).

A second methad for determining AA™ is to
determine the heating rate dependence of T,
{(defined either as the midpoint or the onset
value), for glasses heated at the same rate as the
cooling rate used to form them {90,160]. This
method does not require integration of the heat
capacity curves, but has some disadvantages.
These include the need for temperature calibra-
tion at several heating rates, and a possible shift
in 7, resulting from thermal transfer effects at
high heating rates (Section 2.1.).

Values of Ah* can also be obtained in princi-
ple from least squares fits of the normalized heat
capacity, but this method has its own special set

of problems (Section 4.5.). Values of Ak* ob-
tained by curve fitting are often less thap those
obtained from Eq. (161).

There are conflicting claims about whether
accurate values of Ah* can be obtained from the
heating rate dependence of T, of glasses formed
at a constant cooling rate. Tribone et al. [162)
reported that this method pave values for Ah*
that agreed with those obtained by keeping Q=
©,., but Hodge [130} challenged this by asserting
that calculations using known input values of
Ah* yielded constant @, activation energies that
were substantially less than the input AR*.

4.4.2. Pre-exponential factor

The pre-exponential parameter, 4, is fixed by
Ah* and T/. Tt is given to a f{irst approximation
by Eq. (133), but best values are obtained by
matching calculated values of T, with experimen-
tal values, for whatever history is being parame-
terized {including those with annealing). As has
been emphasized by Moynihan and co-workers
[42,160], it is very important that the experimen-
tal and calcolated values of 7’ be martched 10
ensure a self-consistent set of parameters {Sec-
tion 4.5.).

4.4.3. Non-exponentiality

By far the most frequently used method for
obtaining non-exponentiality parameters from ex-
perimental data is the curve fitting method, de-
scribed below. Because of the intricacy of the
phenomenology, and the possibility of systematic
experimental error, it is probably asking too much
at the present level of development 10 determine
the components of g(r) from experimental data.
To date, a specific functional form for g(r) or
¢(t} has always been used (most often the
stretched exponential function), and best fit esti-
mates obtained for a single shape parameter {e.g.,
B). The assumption of a specific functional form
for ¢(1) or g(7) is not ideal, but seems in-
escapable at the present time. Hutchinson and
Ruddy [163] suggested that, given values of x and
g, a non-exponentiality parameter can be esti-
mated from the value of C/ ., as a function of
Q./Q,. This method is attractive, because it uses
the same histories as those needed to determine
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8 or Ah*. It has been used by Huichinson [96] to
determine the siretched exponential parameter
for poly(vinyichloride) (PVC), polystyrene {(PS)
and three Ag-T-MoO, glasses.

4.4.4. Non-linearity

Several methods have been proposed for de-
termining the KAHR and NM non-linearity pa-
rameter, x, from heat capacity data obtained for
different thermal histories. Some of the proposed
methods are incorrect, and others have particular
difficulties or a restricted range of validity.

4.4.4.1. Annealing method. Moynihan et al. [164]
used a method that exploited thermal histories
for which the decay function could be approxi-
mated as an exponential. As with some of the
other methods described here, this has so far only
been applied to one material. In this case, how-
ever, the value of x agreed with that found by
curve fitting, under conditiens in which the curve
fitting method was believed to be valid. The an-
ncaling method is based on the expansion of a
non-exponential decay function as a weighted sum
of exponentials. For short annealing times only
the shortest retardation time component, t,, con-
tributes to the relaxation, and che decay is ap-
proximately exponential. The weighting factor for
this component, g,, is the same as that for the
component of Ty, Ty, that relaxes with time con-
stant 7,, and is estimated from the fraction of
relaxation that occurs after long annealing times:

g = O —Td1)
U0 -1,
The time dependence of T (1) is then given by

P F ¢
(1) = T, +8,(Ti(0) ‘Ta)exll‘(—fo ]

(162)

(1)
+ 2 8:(T(0) - T,). (163)
i=2
where 7,(f) is given by
x AR*  (1—x) AR*

71} =A, exp (164)

.+_
RT, ~ RT,(1)

For the material being studied (a ZBLA glass),
the value of A#™* obtained from Eq. (161) was

sufficiently large that differences in 7, gave rise

to relatively small changes in T, compared with

T, =T, (foralli), (165)
and Eq. (163) simplified to
Ti(1) =g,T, + (1 —g1)T;(0)

¢ dt’
+8.(T(0) - T,) exp(-—fn - (’r,) ]

(166)

The parameters x and A, are now the only
unknowns, and can be obtained by fitting Eqs.
(164) and (166) to experimental values of T;(¢).
Note that Egs. (162} and (166) are consistent
because, for long annealing times, the exponen-
tial decay falls to zero and

T(to o) =g, T, + (1 - ¢)Ty(0)

= T;(0) — g,[T;(0) - 7], (167)
s0 that a fraction g, of the maximum possible
change in T has occurred. Some judgment must
be made as to how short the annealing time
needs to be for Eq. (158) to be valid. In principle,
different values for ¢, could be chosen to estab-

lish a range in x, but this has not vet been
attempted.

4.4.4.2. Method of curve shifting. Hutchinson and
Ruddy [91] determined x by exploiting two theo-
retical results. Both the KAHR and TN phe-
nomenologies predict that, for scans of unan-
nealed glasses for which the ratio of cooling to
heating rates is constant, the normalized heat
capacity curves shift to higher temperatures with
increasing heating rate but do not change shape.
Deviations from this prediction are attributed to
thermal transfer effects. After corrections for
these effects have been applied, x is obtained
from a second theoretical result, that a unique
function, F(x), describes the shift in peak tem-
perature, T, with respect to Q, (,, 7,, and the
enthalpy lost during annealing [90,162,165-167]:
9 oT, 8 o7, o7,

_ _ —q1oac e

=m0 "amo, T
(168)

#T, /3T, = 0, (169)
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where 8§ (Eq. (30)) is the enthalpy Jost during
annealing between times ¢,) and ;!

—"
ac,

= H(1) —H(1y). (170)

The partial derivatives are by definition evaluated
by holding all other variables constant, and this
can be done with experimental ease only for the
derivatives with respect to 8 and (0, or with
respect to Q. if no annealing occurs between
cooling and reheating. The @, derivative is sub-
iect to all the disadvantages associated with heat-
ing rate methods (see above), but the derivative
with respect to (). can be obtained from the
same experiments needed to determine Ah™* or 8
(Eq. (161)). The derivative with respect to & has
only the minor disadvantage, shared by most of
the methods described here, that time-consuming
long anneals are needed to ensure (a) the shift in
T, is large enough for an accurate determination
of the derivative, and (b) the peak is due to
annealing. Under these conditions, the peak
heights can be very large, and corrections for
thermal transfer become important. Analysis of
the published plot of F(x)[91] reveals that it can
be approximated as

F(x)=K((1/x)—1). (171)

The value of K is a weak function of the distribu-
tion of retardation times, decreasing from 0.87
for an exponential decay to 0.75 for a stretched
exponential with g = 0.456. Most values of 8
exceed (146 (Table 1), so the approximation that
F(x} is independent of glln 7} is a good one.
Moreover, the variation that does occur does so
in a region where F(x) changes rapidly with x, so
that estimates of x are insensitive to uncertain-
ties in F(x). An approximate mathematical anal-
ysis predicts K =1 [91,168]. Hutchinson and
Ruddy [91,163] applied this method to
polystyrene, and obtained a value of 0.48 for x
that is in excellent agreement with values ob-
tained by other researchers, mostly by curve fit-
ting {Section 4.5.).

4.4.4.3. Temperature srep method. This method
was proposed by Lagasse et al. [169] for the
analysis of volume recovery data. It has not vet

been applied 10 experimental volume or enthalpy
relaxation data, and has been criticized by
Hutchinson and Kovacs [170], but is included
here for the sake of completeness. The method
was originally described in terms of the KAHR
phenomenology, which we augment here with the
equivalent TN expressions. The method uses two
temperature steps of different magnitudes but
same sign, T) —~ T, att=0and T, = T, at r =1,
(T,>T,>T,), and extracts x from the limiting
ratios

(Tr(fa)_ra) and(T(Tz))
Tf(ra) - TZ 1,—0 T(TB) :a—~0,

for different magnitudes of the second jump at ¢,.
The ratio of the relaxation times is given by

(T(Tz)
7(T5)

) = exp{ —x8 AT,)
f,—0

o5 )7 7 )

(172)

4.4.4.4. Heating rate dependence of T, This
method [171,172] has been criticized by Crichton
and Moynihan [173], Hutchinson and Ruddy [174]
and Hutchinson [175], but is included here to
illustrate some of the pitfalls in analyzing non-ex-
ponential and non-linear enthalpy relaxations.
The principal criticism is that the method does
not properly account for the memory effect asso-
ciated with non-exponentiality. The method cen-
ters around an equation derived from the simpli-
fication that T, remains unchanged during scan-
ning until T = T, = T is reached, but this approx-
imation 1s valid only for unannealed glasses
formed at very slow cooling rates that are difficult
or impractical to achieve. Using calculated
dT,/dT data, Crichton and Moynihan [173] ob-
tained values of x using this method that differed
greatly from the input values. For {Ah* /R =5 X
10* K, B =x = 0.5}, values of x evaluated by this
method ranged between 0.63 and 0.97, depending
on history. If 7, was defined as the inflection
point of the heat capacity rise, slow cooled and
annealed glasses produced values for x of 0.63-
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(.65, consistent with each other but again differ-
ent from the input value. Crichton and Moynihan
observed that these estimated values of x would
seem very reasonable to someone who did not
know the correct input values. Hutchinson and
Ruddy [174] showed that this method, using slow
cooling rates, was equivalent to their peak shift
method [91]) using annealing {(Section 4.4.4.2.).
Both methods depend on the glass being close to
equilibrium (T; = T,), but Hutchinson and Ruddy
noted that this condition is difficult to achieve
without annealing. This objection is consistent
with the criticism of Crichton and Moynihan,
because glasses that are close to equilibrium have
almost erased the effects of their thermal history
and therefore do not exhibit strong memory ef-
fects.

4.4.4.5. Adam-Gibbs T,. Good estimates of 7,
can be made if 7, and the NM parameters are
known, using Egs. (113) and (116). The accuracy
of these equations has been demonstrated by
several researchers {86,113,130,133,154,157]. Val-
ues of T, can also be obtained by the curve
fitting methods described next.

4.5. Curve fitting techniques

Enthalpy relaxation parameters can be ob-
tained from experimental heat capacity data us-
mg computer assisted visual fitting [160], or non-
linear regression optimization methods [86,161).
The simplest 1echnique is to compare experimen-
tal and caiculated heat capacity curves with trial
and error changes in parameters. This method
was used in the early work of the Moynihan
school and produced estimated uncertainties in x
and B of +0.05. In the past few years it has
become increasingly common to use the multidi-
mensional Marquardt [176] optimization algo-
rithm, first applied to enthalpy relaxation by
Hodge and Huvard {177]. This optimization tech-
nique changes centinuously from the method of
steepest descents when the fit is far from opti-
mum, to the Newton-Raphson method when the
optimum is approached. A user-specified objec-
tive function, ¢, is minimized in a multiparame-
ter search space that is bounded by user-specified

parameter limits. A FORTRAN algorithm has
been published [178]. To date, ¢ has always been
specified by the residual sum of squared differ-
ences between experimentally observed and cai-
culated normalized heat capacities:

&= T (Cl(obs) - CP(cac) . a7)

i=1

This objective function places most weight on the
largest values of CJ that occur in the overshoot
region, which is not entirely satisfactory because
thermal transfer problems are most significant for
high overshoot heat capacity data. A better ex-
pression for & that would not introduce other
problems, for example sensitivity to the choice of
C,(T) for small values of CJ, is not evident,
although defining @ as the logarithm of the sum
of squared residuals fs am interesting possibility
(set to zero for sums less than unity, so that an
appropriate scaling factor would be needed). Sales
[86] applied an optimization algorithm due to
Bevington {179]. The Marquardt and Bevington
algorithms are hard-pressed to optimize all four
parameters of the standard TN formalism, be-
cause the parameters are strongly correlated
[130,161]. Reliable and history invariant values of
B can usually be obtained from four parameter
optimizations, but the parameters x and Ah*
often vary with thermal history. A better proce-
dure is to use a three-parameter optimization by
fixing one of the parameters, preferably Ah* ob-
tained from Eq. (161). When Ah* is fixed, the
value of In A is tightly constrained becanuse varia-
tions in it shift the heat capacity curve along the
temperature axis, and even small shifts produce
large changes in @ because of the steepness of
the heat capacity curves near 7,. Iln addition,
In A and Ah* together determine 7y, which
should be maitched to the experimental value to
ensure consistency. The parameter search space
is then two-dimensional, and x and 8 can be
obtained quickly. If desired, the fourth parameter
can be estimated from the minimum in @, al-
though this is ofien guite broad, and its position
can shift with thermal history. In these cases, it is
commonly found that 8 is fairly constant across
the minimum, but that x changes systematically
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with Ak* to produce values of x Ah*™ that are
almost constant.

Hodge and Buvard [177] found that the best fit
value of Ah* for PS, obtained from the minimum
in &, was the same as that found from the
cooling rate dependence of T;. Hodge [161] also
observed consistent values obtained by the two
methods. Others have reported that values of
Ah* obtained by curve fitting are less than those
determined from Eq. (161). Substantially smaller
values were reported by Prest et al. [153] for PS.
They found that Ah* obtained by several meth-
ods of analysis of the cooling rate and heating
rate dependences of T were self-consistent, but
were about a factor of 2 larger than those found
by curve fitting. The only significant difference
between the data sets of Hodge and Huvard and
of Prest et al. is the ratio of heat to coding rates
(0.25 and 1, respectively), so it secms that thermal
iransfer effects may be significant.

Adam-Gibbs parameters can also be obtained
using Marquardt or similar optimizations
[86,113,130,133,154,157] but, as with the NM
equation, four parameter optimizations are not
practical. For three parameter optimizations, it is
not clear whether @ or T, should be fixed, be-
cause both @ and T, determine x and Ah™ 4.
Hodge [130] reported that three-parameter Mar-
guardt optimizations performed by fixing T, were
less dependent on starting estimates of the pa-
rameters, and less likely 10 become caught in
Jocal minima, than optimizations in which {7 was
fixed. Sales [86] also fixed T, in his optimizations
using the Bevington algorithm, and obtained a
best fit T, from the minimum in &.

4.6. Thermal iransfer effects and high overshoot
data

The experimental sources for these effects were
discussed in Section 2.1.3. They are most severe
for the highest overshoot data, although as noted
earlier Hutchinson and co-workers have raised
questions about the validity of applying curve
fitting methods to all experimental data. These
investigators found that heat transfer effects shift
T.. 10 higher temperatures for heating rates
greater than about 20 K min~! (in addition to the

well-recognized effect of heating rate on temper-
ature calibration), and calculations by the present
writer using Eqgs. (5§7)-(60) confirm this shift {111].
Thermal transfer effects were also recognized by
Hodge [130,161], who averaged parameters from
low overshoot data obifained at 10 K min~!, and
assessed predictions of long aging time behavior
by comparing experimental and calculated values
of T{. O'Reilly and Hodge [89] observed that x
and B for PS varied strongly with thermal history,
and that these variations occurred using a heating
rate (1.25 X min~!, with signal averaging) at
which heat wransfer effects were negligible. They
concluded that the phenomenology was deficient,
and suggested that the methods for describing
non-linearity were incorrect. Moynihan et al. [113]
also concluded that the treatment of non-linearity
is imperfect (see Section 7).

High overshoot data also provide challenges to
the approximations inherent in numerical inte-
grations, and other simplificaions, These include
the following.

{1) Selection of a suitably small time subinter-
val during long anneals. In some cases 0.2 decades
is too long (Section 4.2.}.

(2) Temperature steps used for Boltzmann
summations must be sufficiently small. The need
for small temperature steps is especially impor-
tant in the overshoot region (see Eq. (146), for
example) but, in some circumstances, tempera-
ture steps of 1 K can also be too large during
cooling, or heating below the main transition
temperature range.

(3) The approximate equivalence between
dT;/dT and C)’ may break down, However, it is
unlikely that any difference is more than a few
percent (Section 1.2.3.).

The relative importance of experimental and
compuiational difficulties in handling high over-
shoot data is not known with any confidence.
Thermal transfer effects may be smaller for inor-
ganics than for polymers, because their ghass tran-
sitions occur over a wider temperature range
[113] and their thermal conductivities are higher.
However, there is increasing agreement that the
thermal history dependence of model parameters
is due to a real deficiency in the current phe-
nomenologies, rather than thermal transfer ef-



LM. Hodge / Journal of Non-Crystalline Solids 169 {1994) 211-266 243

fects. Nevertheless, a better quantitative assess-
ment of thermal transfer effects is desirable be-
fore the accuracy of alternative phenomenologies
can be properly assessed.

4.7. Non-thermal histories

4.7.1. Hydrostatic pressure

Hodge and Berens [180] used a simplified
method for introducing hydrostatic pressure, P,
that was adequate for their purposes but is not
rigorous enough to be regarded as a general
method. They noted that P lengthens the en-
thalpic retardation time, and suggested three ways
for introducing this. The Jogarithm of the pre-ex-
ponential factor, In A, or the NM activation en-
ergy, Ah*, can be increased in direct proportion
to P, or a shift in 7; can be used. In the [ast case,
the equilibrium condition is redefined as 7, = (7-
K)P, where K is a positive constant, so that the
usual equilibrium condition T, = T only holds for
P =0. It was assumed that the non-linearity pa-
rameter, x, and the stretched exponential param-
¢ter, B, were independent of P. The shift in 7,
with P was estimated from the enthalpic Ehren-
fest relation, Eq. {(49), repeated here in a modi-
fied form for convenience:

(aTs/aP)H =V, T.(da/AC,), (174)
where ¥, is the volume at T,- The constancy of H

in Eq. {174) corresponds to fixed T, and in the
approximation T = T; = T, one has

(BTg] o, (2l /0Py,
apP (ap).,,,o_ (31n ro/0T),

Partial differentiation of the NM equation under
these conditions yields

(175)

din rgly = oW g XARTV Aa
‘" RT? RT, AC,
(176}
The corresponding changes in In A, Ak* and T,
are
din A:JCM*Vg Ao d (177)
RT, AC, ’
a ane < ZARY Be (178)
AC ’

and
at= (2 )l

f”(l—x) ac, ¥ (179)
For T=T, < Ty= T, the right-hand sides of Eqgs.

(176)- (1?9) are multlplied by a factor of order
(7,/T, [180), obtained by replacing T2 with T.2
in Eq. (176) and retaining T, in Eq. (174). None
of these equations are readily generalized to arbi-
trary temperature and pressure histories, al-
though pressure scans at constant temperature
could presumably be approximated by ramping
InA.

Ramos et al. [181] adopted a more rigorous
method for introducing pressure into the KAHR
formalism. They wrote

dé= -6 AadT+8 Ax dP
a8
+E(

i=] a§ dg{

T Pjmi

A‘r
— Y Aq, dT+ ):AK dpP, (180}

i=1] i=1

where & is an order parameter, and then ne-
glected the first two terms for small 8. The time
dependence of the components §, is given by

dé, dr dP b
— = —Aa,— + Ax,— + —
T

dr “dr " dt (1=i<N),

i

(181)

where the exponential decay of each §; has been
introduced. For changes in both T and P, the
shift factor, a;, is given by

8
a; = exp —1(1 —'I)G?—El—; + (1 ‘—I)BP'E;—(‘P—)- ,

(182)
b, = (bxe/f )P, (183)

where b is a constant and «; is the pressure
coefficient of the free volume f; .. Gupta {80]
introduced pressure into structural telaxation
phenomenoclogy by considering a fictive pressure
in addition to the fictive temperature.
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4.7.2. Mechanical siress and vapor induced swelling

The only attempt 10 introduce these perturba-
tions into enthalpy relaxation phenomenology was
made by Hodge and Berens [180] They consid-
ered annealing of poly(vinyl chloride) (PVC) that
had been exposed to mechanical stress (near or
above the vield stress), or to swelling induced by
solvent vapor absorption followed by rapid des-
orption. Annealing took place after the release of
these non-thermal perturbations. It was assumed
that the treauments increased T instantaneously
(a reasonable assumption given the rapid applica-
tion and release of stress or solvent vapor), by an
amount AT; that decayed with reduced time dur-
ing subsequent annealing and reheating. This de-
cay was assumed to be described by the same
relaxation parameters as the thermal history, and
was superimposed on the response 1o the purely
thermal history. Good agreement with experi-
mental data was obtained using values of AT;
that increased linearly with the applied perturba-
tion {stress or solvent vapor pressure), In particu-
lar, the calculations reproduced the experimental
result that only the sub-7, endotherm peak
heights, and not the peak temperatures, were
affected by the applied perturbations,

5. Experimental resuvlts

In this section, we resirict our attention to
qualitative experimental results, and defer a dis-
cussion of relaxation parameters to Section 6.

3.1, Scanning calorimetry

5.1.1. Enthalpy recovery near T,

Simple cooling and reheating histories produce
heat capacity curves during heating that exhibit
an increase in C,; over the glass transition range,
followed by a maximum and a decrease to the
equilibrium liquid or rubber value. Exceptions to
this are seen in glasses with high values of T/
produced by very fast cooling rates, such as in
splat quenching, vapor deposition or quenching
of fine fibers. Slow scans of these glasses exhibit
exothermic dips in the heat capacity just before
the increase in C, at 7,. These exotherms occur

because the relatively high value of 7{ produced
by a fast quench greatly shortens the average
retardation time, and during the slow reheat T;
has time to relax towards the equilibrium state
defined by T, =T from values 7; > T. This relax-
ation produces negative values of d7;/dT and an
exothermic excursion below the glassy heat capac-
ity. The phenomenon is illustrated in Fig. 1(B).
The exotherm can be suppressed by decreasing
the high initial values of 7} by annealing below
T,. For the more common simple overshoot, the
equilibrium c¢ondition T;=T is reached before
any relaxation can occur, and dT;/dT remains
positive as T; approaches the equilibrium state
T;=T line from values T; < T (Fig. 1{(A)).

5.1.2. Isothermal annealing

Enthalpy lost during annealing is usually {but
not always) recovered near 7, during reheating,
producing the familiar high overshoot in an-
nealed glasses. Pioncering studies of this phe-
nomenon were made by Volkenstein and
Sharonov {182], Foltz and McKinney [183] and
Petrie [184], all of whom demonstrated that the
magnitude of the overshoot was a quantitative
measure of the enthalpy relaxation that had oc-
curred during annealing. Other quantitative stud-
jes were reported by Straff and Uhlmann [185],
O'Reilly [186], Ali and Sheldon [187] and Ophir
et al. [188). The number of papers containing
qualitative statements about annealing peaks near
T,, either as the primary area of study or as part
of a larger investigation, is Immense, and no
useful purpose would be served by citing them
all. Every study of which this writer is aware
reveals that enthalpy recovery near T, responds
to changes in anoealing conditions the same as
enthalpy recovery in the glassy state, discussed in
the next section. Thus, we discuss here only those
studies of enthalpy recovery near T, that are of
special interest or novelty, or illustrate the variety
of materials studied. The selection is inevitably
subjective.

Ten Brinke and co-workers [189,190] applied
results from enthalpy relaxation phenomenology
to blends of PVC/poly(isopropyl methacrylate)
(PVC/PGPN)MA), PVC/poly(methyl methacry-
late) (PYC/PMMA), and PS/poly(2-vinyl pyri-
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dine) (PS/PVP), and showed that the miscibility
or immiscibility of components with closely simi-
far T, could be established if appropriate anneal-
ing histories were used. For the PS/PVP blends
(190], for which the T, of the PS and PVP used
were 106 and 100°C, respectively, annealing at
91°C for longer than 6 h produced two heat
capacity maxima that became increasingly better
resolved as annealing times increased to a month
or so, demonstrating that PS and PVP are immis-
cible. The better resclution at longer annealing
times occurred because PVP reached its equilib-
Tium state after only relatively short annealing
times at 9°C below its T, producing an annealing
peak that did not shift with further annealing,
whereas the annealing peak for PS continued to
move to higher temperatures, even after long
annealing times at 15°C below its 7. For the
PV( blends [189), a separate PVC phase could
easily be identified because annealing of PVC
produced sub-T, peaks that were easily distin-
gwished from the more usual overshoots for
PMMA and PGPrIMA, Quan et al. [191) used
enthalpy relaxation to experimentally characier-
ize the inmerfacial regions of a styrene-hydro-
genated bhutadiene-stvrene triblock copolymer.
Ten Brinke [192] showed that Quan’s results could
be reproduced by the TN formalism, but noted
some complications associated with estimating the
amount of interfacial material. Cowie and Fergu-
son [57) investigated annealing in blends of PS
and poly(vinyl methyl ether) (PVME). They ob-
served heat capacity maxima in the middle of the
glass transition, and reported that the PVME
component annealed independently of the PS
component. Mitovic and co-workers [193,194] in-
vestigated blends of PMMA and SAN (styrene-
co-acrylonitrile). The annealing rates for SAN-
rich blends were slightly faster for anneals 20 and
35°C below T, but at 50°C below T, the rates
were mdependem of composition. The response
1o different annealing temperatures also changed
with blend composition. Gomez-Ribelles et al.
[55] studied enthalpy relaxation in PVC plasti-
cized with dioctyl phthalate (DOP). They re-
ported that only some of the polymer was plasti-
cized (i.e., showed a decrease in 7, with increas-
ing DOP content), with the remainder showing a

concentration-independent T, (alben very weakly,
with AC(T,)=0.01 J g7"). Their plots also ex-
hibited the eﬁ.(remely broad melting endotherms
just above T, associated with the crystallinity of
this material {195]. The breadth of the melting
endotherm is due to the extremely small average
size, but not unusual size distribution, of crystal-
lites that are subject to large surface contribu-
tions to the crystal free energy. (The small amount
of crystallinity is responsible for the toughness of
PVC, and crys:allinity is not reduced by plasti-
cization of the predominant amorphous phase.)
Johari and Maver and co-workers [196-198}
annealed vapor-deposited water and hyper-
quenched agueous solutions just below their T,
to remove the large exotherm resulting from the
high initial TY. This enabled the observation of
glass transitions in the presence of large ice crys-
tallization exotherms just above T Gupta and
Huang {199] investigated enthalpy re]axauon and
recovery in slowly cooled bulk samples and rapidly
cooled fibers {(8~12 pum diameter) of a soda-
lime-silicate glass. They observed the usual
exotherm below T, for the rapidly quenched and
slowly reheated fibers, but were unable to fit the
TN medel to these histories, Warner [200] ob-
served enthalpy relaxation in some thermotropic
anthraquinone polymers, and Hedmark et al, [201]
reported annealing endotherms in a liquid crys-
talline polyester copolymer. Petrie [202) reported
enthalpy relaxation effects in non-polymeric
mesogens. These observations are consistent with
other parallels between the glass transition and
thermotropic transitions in liquid crystals [20].
Stephens [203] described annealing endotherms
in amorphous Se as a function of annealing time
and temperature. The enthalpy loss on annealing
increased linearly with log t,, in the usual man-
ner (see next section), and a plot of data taken
from the published figure exhibits the usual ap-
proximately lineas increase with 7T, (also see next
section). Ma et al. [204] observed annealing en-
dotherms and shifts in T, with annealing time, in
a series of chalcogenide glasses containing Te as
a common component. Changes in T, the breadth
of the glass transition and in annealmg behavior
were observed as a function of average coordina-
tion number (defined by composition). Tatsumi-
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sago et al. [205] observed a minimum in the
enthalpic activation energy as a function of aver-
age coordination number in a series of Ge—As-Se
glasses. Koebrugge et al. [206] observed annealing
¢ndotherms in a metallic glass of composition
Pd oNi Py, that increased in magnitude with
annealing time. Sommer et al. [207] studied the
enthalpy lost during annealing of amorphous al-
Joys of composition CugyTiy;, CuggTigg, Cujs Tig,
Ni,,Zrg; and Pd, Zr1,, as a function of annealing
time. The lost enthalpy increased linearly with
log ¢, at short annealing times and reached con-
stant values at long times, consistent with the
anne¢aled glasses reaching the equilibrium state at
long times.

5.1.3 Sub-Tg endotherms

5.1.3.1. Thermal histories. The occurrence of heat
capacity peaks well below T, defined for present
purposes as the midpoint of the glass transition
for unannealed glasses {Fig. 1{A)), was first re-
ported (for PVC) by Itlers in 1969 [208). Gray and
Gilbert {209] also observed sub-T, heat capacity
peaks in annealed PVC. Chen and Wang [210]
reported a well-developed shoulder just below T,
in PS annealed for 260 h at 320 K (50 K below
T,). Hutchinson and Ruddy [166] observed sub-T,
peaks in PS, as did Ruddy and Hutchinson [211]
in rapidly quenched PS that had been annealed
at 333 K for more than about 48 h, Wysgoski
[212} observed sub-T, endotherms in annealed
ABS (acrvlonitrile~butadiene—styrene) and SAN
(styrene-acrylonitrile) copolymers, and found that
they became more intense and moved to higher
temperatures with increased annealing tempera-
ture, until at 7, =7 -20 K the endotherms
merged with the familiar T, overshoot. Berens
and Hodge [213] observed similar behavior in
rapidly quenched and annealed PVC, and 1e-
ported an increase in both peak height and peak
temperature  with increasing annealing time.
Qualitatively similar, but smaller, sub-T, peaks
have been observed in B,0,; [214], and sub-T,
shoulders have also been reported in zirconium
fiuoride based glasses 1112,164). Hodge [130,161]
observed a well-developed sub-T, heat capacity
peak and a shoulder just below T, for two anneal-

ing histories in atactic PMMA, as did Ribelles
and co-workers [215,216). Ribas [217] observed
sub-T, peaks in epoxy resins. Hofer et al, [218]
observed sub-T, peaks in annealed hydrogel
glasses of aqueous lithium chloride and ethvlene
glycol solutions imbibed in poly(2-hydroxy-ethyl
methyacrylate). The bulk solutions exhibited the
more common overshoots in the glass transition
range. Senapati and Angeli [219] observed sub-T,
endotherms in mixed anion glasses in the system
60A1-(40 — y3AE,80,-yAg, WO, for y values
near 20, after annealing well below T.. For vy
values pear 0 and 40, annealing produced over-
shoots above T,. McGowan et al. [220] observed
sub-T7, peaks in some main-chain nematic poly-
mers. Altovnian et al. [221] observed endother-
mic peaks in annealed Fe—B metallic glasses, and
Chen |222] observed annealing induced sub-7,
shoulders in an amorphous metal alloy {composi-
tion Pd 4 Ni;, Pyo). Sub-T, endothermic peaks with
exothermic minima between them and the glass
transition have been cbserved in several metallic
glasses. The exotherm results from the non-equi-
librium glass approaching the equilibrium ;=7
line from above, commonly observed in rapidly
quenched glasses heated at relatively siow heat-
ing rates (Fig. 1{B) and Section 5.1.1.). The an-
nealing endotherm is superimposed on, and thus
attenuated by, this exotherm. Representative ex-
amples of these effects have been reported in a
series of papers by Inoue, Chen and Masumoto
for (PdggeNig 40835590165 [223], a series of (Fe,
Co,Ni),.Si,,B,s alloys [224], several Zr-Cu-Fe
and Zr—-Cu-Ni compositions [225] and in
(Feg sNigs)esPy; and (FeqsNigs)gB,; [226].
These observations testify to the occurrence of
sub-T, endotherms in a wide variety of glasses.
Such behavior was first explained in terms of
enthalpy relaxation and recovery by Kovacs et al.
[47]. Quantitative fits of the TN phenomenology
to experimental data were first given by Hodge
and Berens [152), who found that the endotherms
were most easily produced in materials with the
most extreme nen-exponentiality (broadest distri-
bution of retardation times). These authors, as
well as others [48], suggested that the phe-
nomenon was a manifestation of the memory
effect. Sufficient data have been published to
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establish some clear experimental trends
[130,161].

(1) The sub-T, peak temperature, 7., the
decrease in T; during annealing, AT}, and the
peak height, Cfmax, all increase approximately
linearly with log t, (at constant T, and short ¢,).
At long t,, these quantities approach limiting
values as the annealed glass approaches the equi-
librium state, and the sub-T, peaks evolve into
overshoots,

(2) The quantities T, AT, and CY  in-
crease linearly with T, at constant 1, when T, =
T .AtT, =T, 20K, AT; and CY ., pass through
a maximum These maxima occur because at
higher T, the annealed glasses reach the equilib-
rium state (T;=T,) and the difference between
Ti and T, decreases to zero as T, approaches T,.

(3) Faster cooling rates before annealing in-
crease CJ .. but have little effect on 7,,,,. Non-
thermal perturbations applied and released be-
fore annealing produce similar behavior {see next
section).

Sub-T, endotherms are superimposed on the
glass transition heat capacity ‘background’, ob-
served at the same cooling and heating rates but
without intervening annealing. This superposition
is clearly seen in published heat capacity curves,
such as those for PS [210], zirconium fluoride-
based glasses [112,164}, and PVC {213,227]. Tt is
alsc evident in calculated curves [32,152]. This
phenomenon is surprising at first glance, since it
might be expected that the non-linear kinetics
would couple the giass transition to changes in T
induced by annealing, The apparent absence of
coupling can be rationalized by noting that the
effective reduced times for the annealing and
glass transition processes are different. The glass
transition and sub-T_ peaks are Boltzmann super-
imposed responses to wo separate perturbations:
cooling through the glass transition, and anneal-
ing. The long average retardation times associ-
ated with low annealing temperatures produce
short reduced times, and these promote sub- 7,
peaks. In these circumstances, only the shorter
retardation time components of the distribution
relax and partial recovery occurs in the glassy
state. Thus, materials with more non-exponential
decay functions, corresponding to broader distri-

butions with a greater proportion of very short
retardation time components, show an increased
tendency 10 produce sub-T, endotherms. At
longer reduced times, produced by Jonger anneals
and/or by higher annealing temperatures and
shorter average retardation times, the reduced
timescale for annealing lengthens and approaches
the characteristically long reduced times associ-
ated with the glass transition. In these circum-
stances, the sub-T, annealing peak merges with
the glass transition and the glass transition begins
to be affected by annealing, as noted by Hutchin-
son and Ruddy [91], for example. At still longer
reduced annealing times, enthalpy recovery is
manifested as the familiar high overshoot above
T,.

The reproduction of sub-7, endotherms and
their behavior with respect to annealing cond;i-
tions by the KAHR and TN phenomenologies
indicates that these endotherms are indeed a
manifestation of enthalpy relaxation and recov-
ery, and are not due to changes in crystallinity or
the devclopment of qualitatively different molec-
vlar structures. Nor are they the result of sec-
ondary relaxations that are somehow manifested
as heat capacity anomalies by annealing, since the
endotherms can be calculated assuming unimodal
distributions.

5.1.3.2. Non-thermal hisiories. Sub-7, endotherms
also occur in polymeric glasses that have experi-
enced hydrostatic pressure perturbations, under-
gone mechanical deformation, or been exposed to
solvent or vapor treatments. Weitz and Wunder-
lich {228] observed sub-T, peaks in PS and PMMA
samples that had been cooled under pressure to
form densified glasses, and reheated under atmo-
spheric pressure. At low pressures, a simple re-
duction in overshoot was observed, with the sub- T,
peaks appearing only at pressures above 200 MPa
At the highest pressures (345 MPa) a broad
exotherm developed between the sub- T, peak
and T,. Although annealing was not mtentlonally
mtroduced it these experiments, the samples were
stored in a freezer for a day or more between
cooling and heating, or were at or near room
temperature for at least the time required to
transfer samples from the pressure vessel to the
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calorimeter. Modeling calculations suggest [32]
that unusvally high fictive temperatures can be
attained following pressure release, and that sig-
nificant relaxation can occur in a few minutes at
raom temperature, sQ it scems reasonable to
speculate that some annealing could have oc-
curred during sample transfer. The exotherms
observed for the highest pressure-densified
glasses are characteristic of rapidly cooled and
slowly reheated glasses, and are ajso consistent
with a high fictive temperature being generated
by release of the high pressures applied during
cooling. These data are qualitatively similar to
those found in splat quenched and annealed met-
als, discussed earlier. Non-polymeric materials
(phenolphthalein, sucrose, KNO,/Ca(NOQ,),) ex-
hibited only a decrease in overshoot with increas-
g pressure, presumably because of the less
non-exponential decay functions (narrower distri-
butions) for these materials, Similar results to
those observed by Weitz and Wunderlich for PS
and PMMA were reported for PS by Richardson
and Savill [227], Yourtee and Cooper [229], Dale
and Rogers [230] and Brown et al. [231], and for
PMMA by Kimmel and Ullmann {232] and Price
[233]. Wetton and Monevpenny [234] cbserved
sub-T, peaks in pressure-densified PVC, PMMA,
PS, poly(4-methoxystyrene), poly(3-chlorostyrene)
and poly{4-chlorostyrene). Prest and co-workers
[235,236} reported sub-7, endotherms in pres-
sure-densified PVC, and observed that they be-
came more asymmetric and moved to slightly
lower temperatures with increasing pressure,
Hutchinson et al. [237] observed a sub-T, en-
dotherm in an anneaied sample of a pressure-
densified silver iodomolybdate glass,

Sub-T;, endotherms have also been observed in
polymers subjected to various mechanical stresses.
Prest and Roberts [235] reported them in me-
chanically compacted PS, and Berens and Hodge
[238] observed them in PVC samples that had
been cold drawn to near or beyond the yield
stress, or subjected to simple powder compaction
(thought to generate localized shear stresses be-
tween the powder particles that exceeded the
vield stress). Brady and Jabarin [239] observed
sub-7, endotherms in tensile drawn PVC. Vapor-
or solvent-induced swelling siresses have also

been reported te accelerate the development of
sub-7, endotherms in polymers. Shuliz and Young
[240] reported such an effect for freeze-dried PS
and PMMA, and Berens and Hodge [213] ob-
served that vapor-induced swelling of PVC accel-
erated the development of sub-7, peaks.

Very few data are available on the effects of
non-thermal perturbations applied during anneal-
ing, but released before heating. Berens and
Hodge [213,238] observed that vapor-induced
swelling, pressure (approximately hydrostatic),
and mechanical stress all decreased the rate of
annealing in PVC when applied during annealing,
Chan and Paul [241]) found that exposure of
BPAPC to high CO, pressure during annealing
reduced the magnitude of the annealing en-
dotherm,

The results obtained to date suggest that it is
the release of the non-thermal perturbations be-
fore annealing, rather than the perturbations per
se, that increases T¢ [32]. An increase in enthaipy
following pressure release is known to occur in
pressure-densified PS [242], and could well be a
general phenomenon. The reduction in annealing
endotherms by some form of stress applied afier
annealing has sometimes been referred 1o as ‘re-
Juvenation’, and it seems likely that this rejuvena-
tion is caused by the increase in T; induced by
the application and release of stress compensat-
ing for the decrease in T; during annealing, It
appears that the application and release of non-
thermal perturbations, particularly when applied
to polvmers, can elevate Ty to higher values than
those achievable by rapid thermal quenches. Thus,
the tendency of many materials to produce sub-Tg
endotherms after long anneals well below 7, may
simply be accelerated by the application and re-
Jease of non-thermal stresses, and that non-ther-
mal histories do not produce any qualitatively
new effects. Modeling results [32] support this
hypothesis,

6. Enthalpy relaxation parameters

Opalka [112] and Moynihan et al. [113] deter-
mined the best functional forms for ¢(¢) and
7(T, T;)} for several inorganic glasses, including



I.M. Hodge / Journal of Non-Crystalline Solids 169 (1994} 211-266 249

B.O, and a series of ZBLA {243] fluoride glasses.
They compared the stretched exponential and a
truncated stretched exponential form for ¢{1),
and the Davidson-Cole, log Gaussian, box and
wedge distributions. For 7(T, T;) they compared
NM, AGL and AGF, The stretched exponential
and AGF gave the best overall fits to heat capac-
ity data. When the fits were within or close to
probable experimental uncertainty, the NM, AGL
and AGF forms for (T, T;) were indistinguish-
able when combined with the stretched cxponen-
tial form for ¢(1). When the best fits were well
outside experimental uncertainty, the AGL and
AGF forms for (7, T;) gave better fits than NM.
Here, we discuss the KAHR, NM and AG phe-
nomenologies for non-linearity, For almost all
parameterizations the non-linear stretched expo-
nential decay function has been used.

6.1. KAHR equation

The activation energy, 8, and non-linearity pa-
rameter, x, have been determined for PS hy
Hutchinson and Ruddy {91]. For a monodisperse
sample with M, = 30.1 X 103, they found 8 = 0.52
K™! (corresponding to Ak* /R =70 kK) and x =
G.48. These x and Ax* values agree within typi-
cal experimental uncertainties (about +10% in
Ah™ and +0.05 in x) with those obtained by
others using the NM equation and TN formalism
(see below), Prest et al. [153] also obtained KAHR
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parameters for PS, and found 8 = 0.47 K~ using
curve fitting, and 8 = 1.0 K~! from the cooling
rate dependence of 7. As discussed in section
4.5,, the reason for the large discrepancy is not
known, but we note here that the curve fitting
value s close to the average value obtained by
other groups. Hutchinson et al. [244] determined
¢ and x for three glasses in the Agl-AgPO,-
Ag,MoO, system. The average value of x was
0.68, and 8 increased with Agl content from 0.21
K™! for 0% Agl, to 031 K~! for 50% Agl
Ingram, et al. {245] reported values of ¢, AAY
and x for three Agl/Ag,MoQ, glasses. By con-
trast with the phosphate containing glasses, the
values of § and Ah* decreased, and x increased,
with increasing Agl content,

6.2. Narayanaswamy-Moynihan equation

Simple thermal histories involving only cooling
and reheating were the first to be parameterized,
and a large number of results have been pub-
lished. Many 1ypes of material have been siudied,
with most classes being represented. A compila-
tion of all published (and some previously unpub-
lished) NM parameters, averaged over histories
that include only rate cooled and heated glasses
with small or no amounts of annealing, is given in
Table 1 (on p. 213). Examples of how well the TN
phenomenclogy fits experimental data for B.O,
and SP4E are shown in Fig. 3.

] | Il ! I |
220 240 260

T/K

Fig. 3. Fits of TN formalism to experimental data for As,Se, and SP4E, using Egs. (143) and (144). From Ref. {42).
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Parameters for PS obtained by different groups
are in good agreement for low molecular weight
monodisperse samples (M, < 40 % 107), and poly-
disperse samples with M, ~ 85 X 10°. Averages
are Ah*/R=78+7kK, x=048+ 006 and 8 =
0.67 + 0.08. The stated uncestainties are standard
deviations for the eight or nine histories for which
only modest departures from equilibrium were
generated. The spreads in values for Ah™ /R and
x are comparable with typical individual experi-
mental uncertainties, but the variability in B is
somewhat larger. Values of Ah™ /R lying outside
the range cited above were reported by Privatko
et al. {246] for higher molecular weights (101 and
110 kK for M_ = 110 X 10* and 233 X 10°, respec-
tively). The value of Ak* /R reported by Stevens
and Richardson [247] for a monodisperse sample
of M_=36x10% is higher still (125 kK), but this
result was heavily weighted by a single datum at a
very slow cooling rate obtained outside the DSC.
Although there is no apparent reason for ques-
tioning this datum, the remaining data lie within
the DSC ccoling rate range of the other experni-
ments and are consistent with AR™* /R = 80 kK.
An increase in Ah™/R with increasing M for
monodisperse samples was observed by Privalko
et al. [246] and Aras and Richardson [248], but
the absolute values observed by the two groups
differ, particularly at lower molecular weights.
The differences are illustrated by the parameters
of the equation used by Aras and Richardson to
fit their data:

Ah*/R=A— (B/M,). (184)

For 29 M_ values ranging between 5.16 x 107
and 1.5 X 10°, Aras and Richardson obtained A4
=131 kK and B=1.05x10% Fitting the Pri-
valko data (M,=9-233x10%) to the same
equation vields A = 106 kK and B = 2.88 x 108,
For M, = 10, these two sets of parameters give
Ah* /R =130 kK and 106 kK, respectively, ai-
most the same with experimental uncertainty. For
M, = 10% on the other hand, the values are 121
kK and 77 kK, a difference of 60% that is well
outside experimental uncertainty. If the highest
M, data of Privalko and lowest M data of Aras
and Richardson are discarded, leaving M_ values

in the overlapping range (1-17 X 103), the aver-
age value of Ah* /R is 79 £ 11 kK. With the high
and low M, values included, Ah™* /R =83+ 20
kK. Fictive temperature data tabulated by Wun-
derlich et al. {249] for PS vield a value for AR* /R
of 78 XK, in agreement with the averages just
cited. Hodge and Huvard [177] and Hodge
[130,161] found {AR* /R = 80 kKK, x = (.43-0.49,
g = 0.68-0.74} for a polydisperse PS, and
Hutchinson [96] reported {Ah* /R =70 kK, x=
0.46, 8 = 0.46} for a monodisperse sample. Prest
et al. {153] reported parameters for a total of 17
thermal histories, the averages being Ah™ /R =
81+ 14 kK, x=0.62+ 009 and B =0.811 0.16.
These last variabilities in AA* /R and x are com-
parable with typical experimental uncertainties,
but the spread in § values is substantially larger
than the rypical uncertainty of +0.05, principally
because some of the reperted values of 8 were
greater than 1. These all occurred for the highest
overshoots {where thermal transfer effects are
greatest, and the departure from equilibrium
largest), and if these histories are excluded the
average becomes §=0.74 £ 0.09. The averages
and variabilities for the other parameters, after
exclusion of the histories for which g =1, are
xr=058+007 and Ah*/R=06+8 kK, both
uncertainties being comparable with experimen-
tal uncertainty. No systematic trends with ther-
mal history or overshoot (CJY ) were observed.
Tsitsilianis and Mvlonas [60] observed that a star
PS had similar parameters to linear PS, although
their value of B was obtained from a linear decay
function and is therefore unreliable (see discus-
sion of the Scherer relations in Section 1.2.3.).
The PS parameters obtained from an analysis
[177] of the data of Chen and Wang [210] are
inconsisient with the values cited above. The dis-
crepancy could arise from the relatively low an-
nealing temperature used in this study, although
the Ah*/R parzsmeter {175 kK) is still much
larger than the next largest value reported by
Stevens and Richardson [247] (125 kK). It is pos-
sible that larger values of Ah™ /R result in some
way from the low values of 7| induced by long
aging times [210} or very slow cools [247].

For PVAc, there is good agreement between
the data of Sasabe and Moynihan {230] and Hodge
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[130,161}, which improves if the values of Ak* /R
are forced to be equal [130] (the two reported
values of 71 and 88 kK are statistically indistin-
guishable at about the 60% confidence level, for
typical standard deviations of +10%). For Ah*
= 71 kK, the differences of 0.06 in both 8 (0.57
and 0.51) and x (0.35 and 0.41} are close to
experimental uncertainty, and can reasonably be
attributed to sample differences (such as molecu-
lar weight distribution). The values of B are in
good agreement with linear dielectric values,
when these are extrapolated to the same temper-
ature [250]. However, the activation energy at
T, =304 K for enthaipy relaxation is higher than
that for dielectric relaxation by a factor of 1.8.
There is also good agreement between the best
fit parameters reported for a-PMMA by Hodge
[130,161] and Ribelles et al. {215], when com-
pared for similar thermal histories. The Ribelles
group reported a thermal history dependence for
their parameters, but their best fit values for one
particular history agreed with the averaged set
reported by Hodge, that was itself heavily
weighted by a single thermal history that pro-
duced a similarly shaped sub-T, heat capacity
peak: Hodge reported {Ah* /R = 138 kK, In A(s)
= —355.7, x = 0.22, B =0.37), and Ribelles et al.
found {Ah*/R=125-150 kK, x =0.18 -0.21,
B = 0.33 - 0.35}. Mijovic and co-workers [193,194)
reported AR*/R =132 kK, in agreement with
Hodge and Ribelles et al. Ott [251] reported a
lower value of Ah*/R =60.6 kK for a-PMMA.
Tribone et al. {162] found Ah* /R = 106 kK, x =
0.15 ~ 0.40 and 8 = 0.35 — 0.45 for a-PMMA. The
difference between the Ah*/R wvalues of
Hodge /Ribelles et al. and Tribone et al. can
reasonably be attributed to the different methods
for determining it. Hodge reported that the pa-
rameter set found by him produced a value of
Ah*/R very similar to that found by Tribone et
al,, if it was defined in the same way (from the
heating rate dependence of T, at fixed Q).
Avramov et al. [252] reported that the actjvation
energies obtained from @ at constant @, and
from Q. at constant Q,, differed substantially
even when determined on the same sample of the
same material (a bistnuth germanate), The activa-
tion energy determined from (2, was smaller

than that obtained from Q_ by a factor (2.4) that
was larger than, but in the same direction as, the
discrepancy between the Hodge /Ribelles et al.
and Tribone et al. activation energies for aP-
MMA (a factor of 1.3). The values of 8 obtained
by Hodge, Ribelles et al. and Tribone et al. are
all similar to values obtained by linear techniques
such as dielectric relaxation spectroscopy. For
example, 8 =031+ 0.02 is estimated from the
data of Ishida and Yamafuji [253), using Eq. (75).
By contrast with PVAc, the average enthalpic
activation energies reported by Hodge, Mijovic et
al. and Ribelles et al. are somewhat smaller than
the dielectric value of 155 kK at 7, =375 K
(again estimated from the data of Ishida and
Yamafuji). Tribone et al, also determined the
parameters for hvdrogenated and deuterated iso-
tactic and syndiotactic PMMA. The activation
energies for these tacticities differed substantially
from that of the atactic form (see Table 1), which
as expected lay between the isotactic and syndio-
tactic values. No significant differences were
found between the parameters for hydrogenated
and deuterated samples, for any of the tacticities.
A dependence of x on thermal history, and an
invariance of B8, were observed for all three tac-
ticities.

Parameters for PVC have been reported by
Hodge and Berens [152]), Hodge (130,161} and
Pappin et al. {254]. Both groups used material
from the same source. The exceptionally low vai-
ues for B obtained by Hodge and co-workers,
0.23-0.27 depending on details of the data analy-
sis, were consistent with average values extracted
from the extraordinarily broad dielectric loss
peaks {which were strongly temperature-depen-
dent, however). 1t is the lowest value of 8 yet
reported for enthalpy relaxation. The extremely
low value of 8 may be caused by the small
amount of crystallinity in PVC, and a correspond-
ing heterogeneous structure, giving ris¢ 1o a phys-
ically significant distribution of relaxation times
in addition to inherent non-exponentiality. The
value of x obtained by Hodge and Berens, 0.10-
0.11, is also extraordinarily small. These x and 8
parameters were determined from the behavior
of sub-T, peaks for different histories, and did
not produce a particularly good fit to the heat
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capacity in the glass transition region. However,
the experimental uncertainties in the data were
rather high, especially for data near the minima
between the sub-T, peak and the heat capacity
rise at T,. Uncertainties near these minima are
determined largely by the extrapolated glassy heat
capacity, which for the powder samples was quite
noisy, and the rubbery heat capacity was ren-
dered uvnusually uncertain by the broad melling
endotherm that almost overlaps with the glass
transition. The cooling rate was also estimated
rather than controlled. Thus, the relatively poor
fits to the glass 1ransition were less significant
than uswal, although it seems a problem does
exist. Pappin et al. [254] reported x =0.27 (al-
most three times larger than the Hodge and
Berens value), and AR™ /R = 135 kK (65% jower
than the value 225 kK found by Hodge and
Berens), Ot {251] reported an intermediate value
of Ah* /R =168 kK for PVC. The origin of the
discrepancies, particularly in Ah* obtained from
integrated heat capacities, is not known, but is
conceivably due to experimental uncertainties that
are larger than claimed by both groups. There are
also possible differences in sample crysiallinities
due to different stabilization protocols above T,
before cooling [195), and differences in C,(T)
could also have arisen from different assessments
of the melting endotherm. Crystallinity has been
reporied to affect the amorphous phase 1255,256),
and as noted above, could affect the § parame-
ter. The difference in x cannot be ascribed 1o the
different vajues of AA*, however, because the
values of x Ah™*/R are very different, ~ 36 kK
for Pappin et al. [254] and 25 kK for Hodge and
Berens [152].

For BPAPC, Hodge [130,161] reported Ak* /R
=150 kK, x=0.19 and 8 = 0.46. Except for 8,
these parameters are similar 10 those reported by
the same author for a-PMMA. The value of 8 is
about 0.10 larger than that of PMMA, and this
difference probably accounts for the infrequent
observation of sub-T, endotherms in BPAPC. Ott
[251] reported Ak* /R = 207 kK for BPAPC.

The values of Ah*/R for inorganic glasses
such as B,0, [86,160], As,Se; [257], Ca/K/NO,
[258], NaKS8i, O, (259], NBS 710 (a soda-lime~
silicate) {129,141]) and lead silicate (NBS 711)

[260], are generally smaller than those observed
for polymers, and the values of x and B8 are
generally Jarger (see Table 1), The parameters for
the monomeric organic material 5P2E (42,261]
are similar to those of the inorganics. Three
materials stand apart from this trend, however,
The parameters for polystyrene are similar to
those observed for many ipnorganics, while those
for a series of inorganic ZBLA fluoride glasses
[243] and lithium acetate (LiAc) are similar to
those for polymers, The parameters for LiAc are
very uncertain, however, because of the inability
to obtain an independent value of Ah* /R (the
samples crystallized at slow cooling rates). For
alkali, mixed alkali and lead silicates [259,260],
the valves of x (0.65-0.70) are much higher than
for any other material, but the values for Ah™ /R
and B are not unusual. Enthalpic values of
cannot be compared with dielectric values for
many inorganics because of the high conductivity
of the latter, although Moynihan et al. [42] com-
pared enthaipy, volume, strain and stress refax-
ation parameters for SP2E, B,O,, As,Se, and a
mixed alkali silicate. They found that the values
of B for different relaxation properties were, with
a couple of exceptions, within the typical uncer-
tainty of +0.05. Activation energies generally
agreed 10 within 10%, with the largest difference
being 20%. There is excellent agreement berween
the parameters for B,O, obtained by Sales [86)
and DeBolt et al. {160].

Hofer et al. [218] reported parameters for
aqueous solutions of ethylene glycol (22 mol%)
and lithium chloride (16 mol%:), both in the bulk
and imbibed in poly(hydroxyethyl methacrylate)
(PHEMA)} as a hydrogel. The x parameters
changed somewhat with thermal history, but the
values of Ah* and averaged x for the bulk and
hydrogel materials were the same within uncer-
tainties. The values of B changed less with his-
tory, but their averages were substantially smaller
for the solutions imbibed in PHEMA than for the
bulk: B decreased from 0.64 to 0.39 for ethylene
glyeol, and from (.93 to 0.68 for lithium chloride.

As noted in the Introduction, the valves of
g = &h*/RT; are similar for a wide variety of
materials, gencrally being of the order of unity
for polymers and 10! for inorganics. The aver-
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age + standard deviation for al) materials Jisted
in Table 1 is 0.57 + 0.32.

The enthalpic activation energies for inorgan-
ics are for the most part the same as those
determined from viscosity data above T,. An ex-
ception to this occurs for the ZBLA glasses, for
which the enthalpic activation energy is 40%
larger than the average of two viscosity measure-
ments [112,113],

Hodge {161] reported correlations between all
four TN parameters for all materials analyzed up
to that time, and these correlations have been
confirmed in more recent compiiations [130,133].
Low values of Ah*/R are associated with high
values of x and 8, and high values of Ah* /R are
found with low values of x and B. They have
been rationalized in terms of the Adam-Gibbs
phenomenclogy, discussed next.

6.3, Adam-Gibbs-Fulcher {AGF) equation

This equation has been discussed in Section
2.3.3. It was noted in that section that the accu-
racy of Egs. (110) and (112)-(116), relating the
AGF parameters @ and T, to the NM parame-
ters x and Ah™, has been established by Hodge
1130], Opalka [112], Moynihan et al. [113], Scherer
[129), Sales [86] and Ribelles et al. [215). Thus,
the AGF non-linearity parameters for materials
subjected only to NM analyses can be estimated
with some confidence. This confidence is rein-
forced by the finding that the 8 parameter is che
same within uncertainties for both NM and AGF
analyses, where these have been performed on
the same materials and for the same thermal
histories. Published AGF parameters are summa-
rized in Table 2, together with values of the

Table 2
Adam-Gibbs-Fulcher parameters
Material Q T, B —ln A(s) Ref. * Ty [Ref] T, [Ref]
(kK] (K) {AGF} (K (Kj
PVAC 6.23 225 .55 66.60 1130] 238 [250]
PVC 2.61 320 0.28 59.74 [130] 2901301 350 ([266]
BPAPC 7.03 325 .54 70.3¢ {1301 {220} {85]
PS 7.1 210 0.74 100.3 [130] 260 [265]
280 [264]
aPMMA 3.43 325 0.34 55.45 {130] 335[263] 2221253)
8,0, 11.6 286 0.65 25,68 [113,260] 335 (65] 402 [65]
As.Se, 582 237 0.67 43.10 [1301 2361203)
SP2E 6.16 147 0.70 6390 {130]
40CalNO, },- 60KNG, 6.73 238 0.4 62.9¢ {134
244y Na,0 (1 - y)K,0]-75.65i0, (y = 0-1.0) 240 222 0.66 46,30 [130]
NBS711° 189 248 0,67 34.95 (260]
NBS710 © 8.06 494 0.63 32.83 (260)
ZBLA 5.86 525 0.50 53.00 |130]
12.5 425 0.46 61.38 [113)
Giycerol ¢ 2.18 134 (.51 34.20 [113] 135 [64) 132 [65]
Giveerol © 3.37 120 0.5 4341 {113}
LiAc 58 335 0.56 - [133] 370[62)
yPbO - {1 — y)P,04 13-19  150- 049- 237~
350 0.77 69.2 (56]
1Fe,05-(1 - xJPHPO,), 19-25  300- 0.50- 53.9-
424} 0.68 69.2 (86}

* Parameters obtained directly using the AGF Eq. (109) for 7,(T, T;).

b Lead silicate.

£ Soda-lime-silicate.
40, =5Kmin~
 Op =20 K min~.
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Fig. 4. Fits of NM {Eg. {88)), AGL (Eq. (108)} and AGF (Eq.

(109} expressions for 7(7,7}), 10 data for atactic poly{methyl-
methacrylate). From Ref. [130].

Kauzmann temperature, Ty, and VIF T; param-
eter where these are known.

In assessing the AGF formalism, we consider
first the quality of fits relative to NM. Following
this we discuss the parameter T, and its relation
to the Kauzmann temperature, Ty, and to the
VTF temperature, T, obtained from linear relax-
ation data above T, (most often dielectric). En-
thalpic activation energies are then compared
with values obtained by dielectric and other lin-
ear relaxation technigques, followed by a discus-
sion of the ‘primary’ activation energy, Apu.

The goodness of fits afforded by AGF is com-
parable with that given by NM, althcugh modest
improvements of AGF fits over those of NM have
been reported by Hodge for PS {130}, Opalka and
co-workers for some ZBLA glasses [112,113] and
Ribelles et al. for a-PMMA [215]. A comparisen
of the NM, AGL and AGF best fits to atactic
PMMA, for a single thermal history that pro-
duces a heat capacity peak in the middle of the
glass transition range, is shown in Fig. 4. Because
of the similarity in fits, almost none of the fitting
problems found for NM are significantly im-
proved by the AGF formalism. The advantages of
AGF are restricted to the physical significance of
its parameters, and its ability to rationalize the
cortrelations observed between the NM and 8
parameters. The reasons for the similarity in fit-
ting quality of the NM and AGF equations have
been discussed by Moynihan et al. [113} They

observed that the ratio of non-linear 1o linear
retardation times at temperature, T, IS approxi-
mately proporticnal to the departure from equi-
librium, (T — 7}), for both NM and AGF expres-
sions. For NM

1n(i) ~ (w)(r—n), (185)

Te RTT;
and for AGF
T QT2
nf 2 ) - ( T, =TT - T) )(T_ o

(186)

The AGF derived values of T, are within 1 K
of Ty for the inorganic materials B,0O; and
As,Se;. This agreement is unusually significant,
both because AC,(T) for these materials closely
follows the hyperbolic form of Eq. (55) from
which the AGF equation is derived, and because
the values of Ty are particularly reliable. The
agreement for B,0; is significant in another re-
gard. It has been a long-standing puzzle why the
viscosity of B,O, becomes Arrhenius slightly
above T,, by contrast with the VTF behavior of
enthalpy relaxation indicated by the equality of
T, and Ty. Angell [21,262] has argued that the
processes responsible for viscosity at tempera-
tures just above T, can decouple from the longer
time processes probed by enthalpy relaxation.
The AGF enthalpy relaxation parameters for
B,0O; support this view.

For a-PMMA, Hodge [130] reported T, = 325
K. A Kauvzmann temperature cannot be calcu-
lated for the uncrystallizable atactic polymer, of
course, but a value of 285 K has been estimated
for isotactic PMMA by O’Reilly et al. [263], The
measured values of AC(T) are the same for
isotactic and atactic PMMA [263], so the differ-
ence in Ty is the same as the difference in 7, if
the residual entropies at T, are assumed to be
equal. For i-PMMA, T, =325 K, Ty = 285 K and
T,—T,=40 K. Thus, Tx =7, —-40=335 K is
estimated for a-PMMA. This value for Ty is
equal to the T, value reported by Hodge [130],
within experimental and computational uncer-
tainties. For PS, Hodge [130) found T, = 210 K,
substamially lower than the values for Ty ob-
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tained by Karasz et al. [264] (280 + 15 K), and by
Miller [265] (260 + 15 K). This discrepancy is the
best documented failure of the AGF formalism to
date, both because of the relatively large number
of published enthalpy relaxation parameters for
PS and because of the reliable estimates of T,
The cause of the discrepancy is unknown. Curi-
ously, however, the value of T, = 260 K estimated
from the anomalous NM parameters obtained
from the Chen and Wang data [13(] agrees very
well with Ty. The AGF value of T, for BPAPC
(325 K) is substantially above T (220 K), but
since this value of Ty is almost 200 K below T,
[85] there is teason to doubt its reliability. It is
possible that the Kauzmann analysis could be
compromised by the parameters used to define
AC,(T), which as noted above (Section 1.34.)
predict AC, = 0 near the melting point. Moyni-
han et al. [113] obtained AGF parameters for
glycerol and propylene glycol. The averaged AGF
parameters for glvcerol were in excellent agree-
ment with the ac calorimetry data of Birge and
Nagel [100,101], but the stretched exponential
parameters were very different. The AGF param-
eters changed systematically with cooling rate at
fixed heating rate, for simple rate scans without
annealing, and the authors concluded, as have
other investigators, that the phenomenology is
deficient, probably in the way non-linearity is
handled.

In cases where T is unavailable, it is of inter-
est to compare T, with the VTF T parameter
cbtained from linear relaxation data above T,.
Part of this interest arises from the possible de-
coupling of enthalpy (and volume) relaxation from
viscosity, diffusion, dielectric, viscoelastic or other
dynamic processes, suggested by Angell [20,21,
262) and discussed for B,O; above. Such decou-
pling manifests itself as differences in T, or T,
for different processes. For PVAc, the enthalpic
value of T,= 182 K obtained from the data of
Sasabe and Moynihan [250] is less than T, = 238
K obtained dielectrically by the same investiga-
tors on the same sample. On the other hand, the
cnthalpic T, value obtained by Hodge [130] for a
different sample of PVAc¢ (227 K) agrees well
with the dielectric 7. Bearing in mind the uncer-
tainties in both 7, and T, associated with fitting

the AGF and VTF equations, the two values are
probably statistically indistinguishable.

For PV, a least squares analysis of the dielec-
tric data of Ishida [266] shown in Ref. [267]
produces a good VTF fit with B=290 K and
T, =351 K. The value for T} is larger than the
enthalpic value for T, of 320 K estimated by
Hodge {130], but forcing T,=7, =320 K pro-
duces a fit almost as good as the best fit (see
discussion of VTF parameter uncertainties in
Section 1.2.1.). Both values far exceed the value
for T, of 193 K estimated from the NM parame-
ters obtained by Pappin et al. [254]. An approxi-
mate value of Ty = 290 + 20 K has been reported
by Hodge for PVC {130], using the calorimetric
data of Gouinlock [268)] but requiring uncertain
corrections for crystallinity and syndiotacticity.
This value for Ty agrees with T,, within the
(considerable) uncertainties in each. For a-
PMMA, analysis of the dielectric data of Ishida
and Yamafuji [253] yields T, =222 K, consider-
ably below both the enthalpic value T, =325 K
cited by Hodge, and the estimated Kauzmann
temperature of 290 K cited above. It is possible
that this difference reflects a decoupling of the
dielectrically active relaxation processes from the
broader, more inclusive enthalpic processes, simi-
lar to that proposed for the viscosity of B,O,.

Estimates of the ‘primary’ activation energy,
Ay, have been published for polymers by Hodge
[130,133]). The numerical factor relating An to
the AGF parameter, (, contains the minimal
entropy, sc*, and the heat capacity change at 7,
{or T,)}, both of which depend on mass. Using the
Wunderlich bead as the mass unit and putting
st =kgIn2 and kg In 3! yields values for
Ap/kg in the range 3.6-18 (for s* =ky In 2)
and 1.4-7.0 kK (for s.* = kg In 3!). The values
for 5,* = k5 In 3! are comparable with rotational
energy barriers. The rationale for choosing s * =
kg In 3! was that three chain segments are in-
volved in crankshaft motions, and that these mo-
tions are reasonable candidates for the localized
rearrangements involving the smallest number of
chain segments. Thus, the AGF ¢ parameters
are consistent with intersegmental rotational en-
ergy barriers being the primary excitation barrier
for cooperative motions near 1, for polymers.
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For inorganic glasses, Scherer [129], Opalka [112]
and Moynihan et al. [164] obtained sensible val-
ues of Au comparable with bond energies, as-
suming s.* =kg In 2.

Sales [86] studied a series of lead and iron
phosphate glasses in which the number of non-
bridging oxygens per PO, tetrahedron was varied
systematically by changing chemical composition.
The AGF equation was used to analyze structural
relaxation in the glass transition, for histories
without annealing. This work is particularly re-
vealing, because of the detailed correlation it
establishes between the AGF parameters and
well-defined chemical and structural changes. As
already noted (Section 6.3.), Sales found that Egq.
(114) relating the AGF parameter @ and NM
parameter Ah* /R was a good approximation for
all materials studied. The AGF equation could be
well-justified for these materials, because of the
approximate equivalency of the hyperbolic and
linear forms for AC, (Section 1.3.4.). The NM
activation energy, Ah*, increased smoothly with
the number of non-bridging oxygens {defined as
( by Sales but referred to here as R to avoid
confusion with the AGF parameter). The in-
crease was due largely to changes in the ratio
T,/7,, and was accompanied by an increase in
AC(T,), consisient with Angell’s ‘fragility’ in-
creasing with R (Section 6.5.). The product Aus *
was independent of composition except for the
most iron-rich glasses. Assuming Ag to be deter-
mined by a P-Q chemical bond energy that is

independent of composition (about 100 kcal
mol ™), the estimated value of W* that deter-
mines s.* (Eq. {102)) was found 1o be about 4.6,
or 2%% Both W* and T,/T, increased with in-
creasing iron content, which was interpreted in
terms of different coordination numbess and ge-
ometries for the Fe?* and Pb%* cations. It was
suggested that the structural constraints imposed
by the crystal-field-stabilized octahedral Fe3+
moieties increased the values of both Aps.* and
T,/T,, compared with the less geometrically con-
strained Pb?* species. As discussed below in Sec-
tion 6.5. with regard to the NM parameter corre-
lations, the increases in both Aps * and T,/T,
are consistent with the idea that Ap, and possibly
5.*, determine the ratio 7,/T,. The values of g
did not exhibit any significant variation with R.
Further interesting speculations about the rela-
tionship berween coordination number and ge-
ometry, the pre-exponential factor, strong and
fragile behavior and viscosity above T, can be
found in the original paper [86].

6.4. AC calorimetry

This experimental technique has been de-
scribed in Section 2.2, Real and imaginary com-
ponents of the complex heat capacity CJ are
obtained as a function of temperature and fre-
quency, and it is found that the temperature
dependences of the fixed frequency real compo-

Table 3
AC calorimetry parameters
Material B —log,, A Ty (K} B(K) Ref. Comment
Glycerol 0.65 £ 0.03 146+ 0.9 128+ 5 2500 £ 300 [100,101]
{Non-linear 0.505 18.85 120 3372 (113] (K min~")
AGF) 0510 14.85 134 2179 (1131 (20 K min~ 1
Propylene glycol .61 + 0.04 138+ 04 114+ 7 2020 + 130 [100]
OTP, _,OPP, 8
x = O {extrap.) 184+ 13 [269]
x=0.09 v 187+ 1.3 117 £ 6 3175 + 320 [269]
0.16 169+ 2.1 186 + 12 2397 + 590 [269]
0.22 202423 172413 3436 + 820 [269]
0.33 222428 164 £ 14 4154 + 900 (269)

* OTPF, o-lerphenyl; OPP, o-phenylphenol.

b Temperature-dependent: g = —0.81 — 425/T (K).
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nent resemble the heat capacity scans during
cooling observable with some DSC instruments,
As with other linear relaxation techniques,
siretched exponential {or other functional) pa-
rameters can be obtained from the real and imag-
inary components (e.g., by applving Egs. (75 or
{(82) to the loss peaks), and VTF parameters can
be obtained from the temperature dependence of
the position of the peak in the imaginary compo-
nent, or of the relaxation time obtained from
stretched exponential fits. It is of considerable
interest and importance to compare the linear
parameters obtained by ac calorimetry with the
non-linear parameters obtained by scanning
calorimetry on the same materials. Unfortu-
nately, ac calorimetry has so far been applied to
only three materials: propylene glycol [101], glye-
erol [101,102], and orthoterpheny) /orthophenyl-
phenol mixtures {269-271]. The linear relaxation
parameters for these materials are collected in
Table 3. AC calorimetric and non-linear DSC
enthalpy relaxation paramecters have been di-
rectly compared only for glycerol [113), and the
non-linear AGF parameters for this material from
Table 2 are included in Table 3 for convenience.
Excellent agreement between the linear VTF and
non-linear AGF parameters is observed, but the
stretched exponential parameter 8 is significantly
different for the two techniques. It is curious that
the discrepancy lies in the nom-exponentiality,
which is believed to be well described, rather
than in the description of non-linear behavior,
about which doubts are mounting. The discrep-
ancy in 8 could perhaps be caused by a fre-
quency-dependent thermal conductivity «{w),
since the stretched exponential was fitted to
C{w)«{w) rather than C,(w) (Section 2.2.). Such
a frequency dependence would not have to be
very strong to modify the shape of the real and
imaginary components, from which 8 is found,
and could be sufficiently weak that the peak
frequency in C}¥ and the retardation time are not
significantly affected, therefore accounting for the
agreement in VTF parameters. However, « has
been found to be independent of frequency for
o-terphenyl and its mixtures [269].

For o-terphenyl, the ac calorimetric value of
Ty (184 £ 13 K by extrapolation) agrees with T

{200 + 10 K} [272). For glycerol, the linear ac
calorimetric and non-linear AGF values of T,
(128 + 5 and 127 3+ 7 K, respectively) also agree
with T, (135 £ 3 K) [64]. The stretched exponen-
tial parameter, B8, is independent of temperature
for glycerol and propylene glycol, but is strongly
temperature-dependent for o-terphenyl. Extrapo-
lation of the latter trend [269) indicates that B8
would be zero at or near T, and T,,. The stretched
exponential g parameters for glycerol and propy-
lene glvcol obtained calorimetrically are smaller
by about 0.15 than the dielectric values {103).

6.5, Paramerer correlations

Strong correlations between B, x and Ah*
have been reported by Hodge [130,133), and were
rationalized in terms of the AGF phenomenol-
ogy. Major conclusions from this work are that
the correlations can be consistently mapped onto
the classification of strong and fragile behavior in
liquids advocated by Angell [5,20,21,62] (the ori-
gins of which can be traced to the work of Laugh-
lin and Uhlmann [123]), and that a high degree of
non-linearity is associated with fragile liquid be-
havior. The mapping arises from (i) the link be-
tween non-linearity and the ratio T,/T; (Eas.
(113) and (116)), (i} the VTF result that devia-
tions from Arrhenius behavior increase with de-
creasing Ty/T, (Eq. (114)) and (iii} the fact that
the strong and fragile classification 1ests on T./T
as a scaling variable. If it is hypothesized that Ap
determines the ratio T} /T,, i.e., that a high pri-
mary activation energy prevents T{ from ap-
proaching T,, it can be shown that x Ah* is
approximately constant:

K Adu=K i 1 =K, (1 ik
Q o= 2 T2 _?f ""Kzl

(187)

Ah* O x Ah*
R ‘_‘fthZ/x:

Eq. (188) is consistent with the experimental ob-
servation that x Ah* is relativelv constant com-
pared with Ah™* alone (see Table 1). It has been
noted by Angell [21], however, that the VTF
equation implies that Q and T/Ty=T,/T,=

=

~K,. (188)
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Tg/TK should be linearly related, if the pre-ex-
ponential factor and the relaxation time at T are
material-independent. For hydrogen bonded ma-
terials, Angell found 7 /T, = 1.0+ 0.0255 Q /T,
consistent with T, — To T,=Tx when Q — 0.
On the other hand the assumption that Au
determines T,/T, could also be regarded as be-
ng vmdlcated by the correct prediction that 'T(T)
is relatively constant for different materials, An-
gell [5,20,21,83] has also argued that the thermo-
dynamic contribution to the AG @ parameter,
[AC (T}, as well as the kinetic factor, Au, are
both important in determining liquid state dy-
namics. Thus the assumption that Ax is the dom-
inant factor may only be valid for similar classes
of material, and this would be consistent with the
separate correlations observed for different
classes of materials, discussed below. On the other
hand, it can also be argued that the thermody-
namic factor, AC,, would be more consistently
assessed at the thermodynamic temperature, Ty,
rather than the Kinetically determined T, al-
though this would require longer extrapolations
and introduce additional uncertainties. One anal-
ysis [B3] has suggested that using AC(T,) can
generate spurious discrepancies.

If AC(T,) is assumed constant rather than
AC(T,), the proportionality constant between Q
and Au, and the refation between Q and Ah*,
are both modified. Inserting € =C'T, /T, (Eq.
(53)) into Eq. (105) for Q vyields

Q= (NAS Au /(kgC' ))(Tz/T ) (189)
=Q(T,/T,), (190}
so that
Q' =QT/T, (191)
x> AR* T 192
“—Q® T T2 (192)
= —x2 ok 193
CR(1-x)° (193)

Eq. (193) is identical to Eq. (110}, obtained from
AC, = C = constant.

When T;/T,=(1—x)"! is plotted against O
=x? Ah* /R{133], linear relations consistent with

4 T T " T
& Polymers
O PMMAS
oPs
® Inorganis
3l ®ZBLAS _
T/ Tz
2 -
2 .
.
1 . 1 2 1 .
o] 0 20 20
Bx107°

Fiz. 5. Correlation berween T, /T, and AGF porameter B
{equal 10 ¢ of Eq. (109)). From Ref. [133].

Eq. (187) are observed. Separate correlation lines
are observed for different classes of materials,
corresponding to different groupings of constant
x Ah*, suggesting that K, of Egs. (187) and (188)
depends on material type. These correlations are
shown in Fig. 5. The separate correlation lines
could be due to the dependence of AC, on the
class of material, discussed above, or 1o a variable
5.%, as in the iron-rich phosphate glasses studied
by Sales [86). These separate correlation lines
must be regarded as provisional, however, since
the correlations for different material types de-
grade into an uncorrelated broad scatter if T /T,
is plotted against Q' =x? Ah* /(R(1 — x)).

The stretched exponential parameter, 8, also
correlates with x and T{/T,. The correlation
between x and 8 is shown in Fig. 6. Hodge [133]
used the long-standing idea, based on the
Adam-~Gibbs concept of increasing size of relax-
ing groups and increasing cooperativity with de-
creasing temperature, to suggest that 8 should
approach 1.0 in the limit 77 /T, —» » {(x = 1.0),
and tend to zero as 7y = T, (x = 0). A simple
functional relation that satisfies these limits, and
which is consistent with the approximately linear
correlation observed between x and S, is

T, 1
T, (1-x) (1-8)

(194)
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Fig. 6. Correlation of NM parameter, x, with non-exponen-
tiality parameter . From Rel. [133].

As already noted, independent experimentat evi-
dence for B — 0 as T — T, exists for o-terphenyl
and salol [269]. Two objections to Eq. (194) have
been raised, however, First, although its equilib-
rium form (T} = T') is consistent with the strong
temperature dependence of B observed in many
(but not all) materials {the o-terphenyl mixtures
observed by Dixon and Nagel [269], for example),
it is inconsistent with the TN assumption that 8
is constant. This criticism can be countered by
appealing 1o the same reasoning used to explain
the success of the generalized Arrhemius NM
equation (Section 3.2.1.), namely that the range
in thermodynamic and fictive temperatures over
which relaxation occurs in a DSC scan is suffi-
ciently small that 8 can be well approximated as
being constant. A second objection [273] is that
Eq. (194) is inconsistent for the many other mate-
rials for which the linear values of 8 are constant
(glycerol and propvlene glycol, for example [103]).
In particular, the generally Jower values of x for
polymers implies a stronger temperature depen-
dence for z* and therefore of B, yet B8 is gener-
ally less temperature-dependent for polvmers
than for monomeric glasses. However, the tem-
perature dependence of z* from which Eq. (194)
is derived is weaker for T'>» T, than for T=T,.
Also, the range in T/ /T, over which significant

changes in enthalpic 8 values occur (~ 1.11-2.5)
is much larger than the typical ranges in 7/7,
over which linear data are acquired. Independent
support for Eq. (194) has come from recent work
by Moynihan and Schoeder [274], who described
light scattering evidence for nanoscale inhomo-
geneities in glass-forming liquids that relax at
different rates. They suggested that this could be
the source of non-exponentiality, Expressions re-
lating the non-linearity parameters to the size of
these regions were derived, and the predicted
sizes of the inhemogeneities were shown to be in
excellent agreement with those determined by
other methods. In this interpretation the physical
significance of non-exponentiality lies in the dis-
tribution of retardation times associated with the
inhomogeneities, rather than the inherent non-
exponentiality of cooperative or collective molec-
ular motions. A temperature-dependent 8 is pre-
dicted that is consistent with 8 approaching zero
as T =T,

Exceptions to Eq. (194) nevertheless occur.
For bulk and hydrogel imbibed aqueous ethylene
glycol (EG) and LiCl solutions [218], the value of
£ is much smaller for the solutions in gel than in
the bulk, but the corresponding values of x and
T,/ T, are very similar. The Jower values of 8 for
the solutions imbibed in gel support the interpre-
tation of a low B as originating from a heteroge-
neous environment in the hydrogels, rather than
from increased cooperativity, if it is assumed that
these different environments have similar non-
linear characteristics. Sales [86) observed that 8
was independent of composition in a series of
phosphate glasses, for which T, /T, changed sys-
tematically. The silicate glasses are also excep-
tional, in having by far the largest values of x and
T,/T, for any material, but normal values of 8.
The large values of T,/T, can reasonably be
attributed to high values of Au associated with
the breaking of a covalent bond {275], and the
relatively normal values of 8 can be attributed 1o
the fact that, once the chemical bond is broken,
geometric constraints make further relaxation
normally cooperative. Thus, the unusually tight
three-dimensional network structure of silicates
may be the reason for their exceptional enthalpy
relaxation parameters.
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7. Summary and future considerations

The current phenomenciogies give good to
excellent descriptions of enthalpy relaxation near
equilibrium. For many (perhaps most) engineer-
ing applications, such as those discussed in
Scherer’s book [9], they appear to be adeguate.
The Adam-Gibbs phenomenology provides valu-
able insights into the physical origin of non-lin-
earity. It establishes a link between non-linearity
and Angell's strong /fragile classification of liquid
behavior, between non-linearity and the Xauz-
mann paradox, and provides a plausible rational-
ization of the correlations observed between the
NM parameters. As with the empirical NM and
KAHR eguations, however, Adam-Gibbs does
not provide a satisfactory description of relax-
ation far from equilibrium. Resolution of the
failure of these formalisms must be counted
among the most important goals of future re-
search,

Moynihan [276) has atlempled 1o modify the
phenomenology in several wavs to improve the
quality of fits, without success. The attempted
modifications were as follows.

(1) Make 7, in ¢{t}=L exp[—t¢/7,] depend
partly on 7Ty, in addition to its dependence on the
global 7} (in KAHR terms, making 7, a function
of both &, and L,g,5;:

x AR* y(1—x) AR*
RT RT 0y,

(1-y)(1-x) Ah*)
+ .
RTI{

T; = TE,U eXp

(195)

Ne improvement was observed (best fits were
obtained with y = 1).

(2) Add a tail to the stretched exponential
decay function:

log g{7,) =log g kww(7:) +K 1082(7:'/C)-
(196)

Best fits were obtained when K =10, i.e., when

g{r,) was the stretched exponential distribution.
(3) Abandon thermorheological simplicity by

making B8 depend on T or T;. The introduction

of such dependences did not improve the situa-
tion, presumably because the range in T and T;
over the glass transition is too small to signifi-
cantly affect 8 (Section 6.3).

(4) Change the form of the non-linearity ex-
pression to make it more sensitive to T— T;:

x AR*  (1-x) AR*
T=Te Pl T + RT
f
+K(Tf~T)3). (197)

No improvement was found.
Ritland [11] also suggested a modification to
T(T, Tf)

dTy/di= 2 (IT- Ty | +k|K=T; V) /7, (198)

which was evaluated by Scherer [154] for volume
relaxation in a Na/Ca /810, glass. Scherer found
improved fits at large departures from equilib-
rium using k=10x10"" and N=7, corre-
sponding te a modification of only one part in 10°
in dT;/de for T;— T =10, Scherer alsc noted
that the stretched exponential parameter, 8, de-
creased at smaller reduced times but that, al-
though incorporating this into the calculation im-
proved most of the fits, not all of the data could
be described within uncertainties, Gupta and
Huang [199] also noted a failure in the TN phe-
nomenology for rapidly quenched silicate fibers
that were far from equilibrinm, although satisfac-
tory fits conld be made to siowly cooled bulk and
fiber data obtained relatively close to equilib-
rium. Rekhson and Ducroux [277] have described
a phenomenology based on the AGF equations in
which a distribution in {Q,} is assumed. The fastest
time constants in g(ln 7,) are characterized by
the smallest O,. These authors showed that this
phenomenclogy removed the inconsistencies ob-
served by Scherer.

Since none of the modifications listed above
allow all histories to be fit with a single set of
parameters, it seems that a more fundamental
change mn the phenomenology is needed. How-
ever, any modification must converge to the pre-
sent phencmenoclogy in the limit of small depar-
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tures from equilibrium, becanse the current
methods for describing non-linearity are consis-
tent with behavior seen near and above T,. The
search for a new phenomenology is made particu-
larly challenging by the fact that a rigorous theo-
retical derivaticn of non-linearity, and of the glass
transition in general, is not yet in sight. The
heuristic Adam-Gibbs approach is probably still
the best account availabie.

A more modest short-term goal is to parame-
terize more materials in more detail. The validity
of the correlations between x, Ah™ and B needs
to be tested for many more material types. More
systematic studies of the type made by Sales [86]
for lead and iron phosphate glasses need to be
made, and the relationship between the AGF T,
VTF Ty, and Kauzmann Ty temperatures needs
to be better defined. For polymers, the effects of
crystallinity and cross-linking density need further
exploration.

A rigorcus and fully sausfactory account of
experimental thermal transfer effects has not yet
been given, Although the data of O’Reilly and
Hodge [89] at very slow heating rates indicate
that thermal ransfer carmot account for all the
observed fitting problems, a standard and rigor-
ous procedure for correcting for thermal transfer
is needed. To date, only Hutchinson and co-
workers [90,91] have explicitly addressed this is-
sue,

Despite the fact that enthalpy relaxation should
now be considered 10 be a standard experimental
technique, its inherent non-kinearity is too often
not fully appreciated, or is incorrectly handled, by
many praciitioners. There are too many literature
reports that contain incorrect data analyses. 1t is
to be hoped that this sitvation will improve, and
that the field will continue to advance in the
future,

It is a pleasure 10 thank J.M. OQ’Reilly, W.M.
Prest Jr. and A.J. Kovacs for valuable and stimu-
lating discussions, G.W. Scherer and JM.
Hutchinson for their valvable comments and
sharing some of their preprints and unpublished
observations, and C.T. Moynihan for valuabie
discussions and permission to cite some results in
advance of publication.
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